Python keras.constraints() Examples

The following are 6 code examples of keras.constraints(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module keras , or try the search function .
Example #1
Source File: timedistributed.py    From fancy-cnn with MIT License 6 votes vote down vote up
def build(self):
        try:
            self.input_ndim = len(self.previous.input_shape)
        except AttributeError:
            self.input_ndim = len(self.input_shape)

        self.layer.set_input_shape((None, ) + self.input_shape[2:])

        if hasattr(self.layer, 'regularizers'):
            self.regularizers = self.layer.regularizers

        if hasattr(self.layer, 'constraints'):
            self.constraints = self.layer.constraints
        
        if hasattr(self.layer, 'trainable_weights'):
            self.trainable_weights = self.layer.trainable_weights

            if self.initial_weights is not None:
                self.layer.set_weights(self.initial_weights)
                del self.initial_weights 
Example #2
Source File: bn.py    From deep_complex_networks with MIT License 6 votes vote down vote up
def get_config(self):
        config = {
            'axis': self.axis,
            'momentum': self.momentum,
            'epsilon': self.epsilon,
            'center': self.center,
            'scale': self.scale,
            'beta_initializer':              sanitizedInitSer(self.beta_initializer),
            'gamma_diag_initializer':        sanitizedInitSer(self.gamma_diag_initializer),
            'gamma_off_initializer':         sanitizedInitSer(self.gamma_off_initializer),
            'moving_mean_initializer':       sanitizedInitSer(self.moving_mean_initializer),
            'moving_variance_initializer':   sanitizedInitSer(self.moving_variance_initializer),
            'moving_covariance_initializer': sanitizedInitSer(self.moving_covariance_initializer),
            'beta_regularizer':              regularizers.serialize(self.beta_regularizer),
            'gamma_diag_regularizer':        regularizers.serialize(self.gamma_diag_regularizer),
            'gamma_off_regularizer':         regularizers.serialize(self.gamma_off_regularizer),
            'beta_constraint':               constraints .serialize(self.beta_constraint),
            'gamma_diag_constraint':         constraints .serialize(self.gamma_diag_constraint),
            'gamma_off_constraint':          constraints .serialize(self.gamma_off_constraint),
        }
        base_config = super(ComplexBatchNormalization, self).get_config()
        return dict(list(base_config.items()) + list(config.items())) 
Example #3
Source File: FixedEmbedding.py    From deeplearning4nlp-tutorial with Apache License 2.0 6 votes vote down vote up
def __init__(self, input_dim, output_dim, init='uniform', input_length=None,
                 W_regularizer=None, activity_regularizer=None, W_constraint=None,
                 mask_zero=False, weights=None, **kwargs):
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.input_length = input_length
        self.mask_zero = mask_zero

        self.W_constraint = constraints.get(W_constraint)
        self.constraints = [self.W_constraint]

        self.W_regularizer = regularizers.get(W_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.initial_weights = weights
        kwargs['input_shape'] = (self.input_dim,)
        super(FixedEmbedding, self).__init__(**kwargs) 
Example #4
Source File: ConvolutionalMaxOverTime.py    From deeplearning4nlp-tutorial with Apache License 2.0 6 votes vote down vote up
def __init__(self, output_dim, init='glorot_uniform', activation='linear', weights=None,
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.output_dim = output_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)
        self.constraints = [self.W_constraint, self.b_constraint]

        self.initial_weights = weights

        self.input_dim = input_dim
        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(ConvolutionalMaxOverTime, self).__init__(**kwargs) 
Example #5
Source File: ConvolutionalMaxOverTime.py    From deeplearning4nlp-tutorial with Apache License 2.0 6 votes vote down vote up
def __init__(self, output_dim, init='glorot_uniform', activation='linear', weights=None,
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.output_dim = output_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)
        self.constraints = [self.W_constraint, self.b_constraint]

        self.initial_weights = weights

        self.input_dim = input_dim
        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(ConvolutionalMaxOverTime, self).__init__(**kwargs) 
Example #6
Source File: bn.py    From deep_complex_networks with MIT License 5 votes vote down vote up
def __init__(self,
                 axis=-1,
                 momentum=0.9,
                 epsilon=1e-4,
                 center=True,
                 scale=True,
                 beta_initializer='zeros',
                 gamma_diag_initializer='sqrt_init',
                 gamma_off_initializer='zeros',
                 moving_mean_initializer='zeros',
                 moving_variance_initializer='sqrt_init',
                 moving_covariance_initializer='zeros',
                 beta_regularizer=None,
                 gamma_diag_regularizer=None,
                 gamma_off_regularizer=None,
                 beta_constraint=None,
                 gamma_diag_constraint=None,
                 gamma_off_constraint=None,
                 **kwargs):
        super(ComplexBatchNormalization, self).__init__(**kwargs)
        self.supports_masking = True
        self.axis = axis
        self.momentum = momentum
        self.epsilon = epsilon
        self.center = center
        self.scale = scale
        self.beta_initializer              = sanitizedInitGet(beta_initializer)
        self.gamma_diag_initializer        = sanitizedInitGet(gamma_diag_initializer)
        self.gamma_off_initializer         = sanitizedInitGet(gamma_off_initializer)
        self.moving_mean_initializer       = sanitizedInitGet(moving_mean_initializer)
        self.moving_variance_initializer   = sanitizedInitGet(moving_variance_initializer)
        self.moving_covariance_initializer = sanitizedInitGet(moving_covariance_initializer)
        self.beta_regularizer              = regularizers.get(beta_regularizer)
        self.gamma_diag_regularizer        = regularizers.get(gamma_diag_regularizer)
        self.gamma_off_regularizer         = regularizers.get(gamma_off_regularizer)
        self.beta_constraint               = constraints .get(beta_constraint)
        self.gamma_diag_constraint         = constraints .get(gamma_diag_constraint)
        self.gamma_off_constraint          = constraints .get(gamma_off_constraint)