Python keras.__version__() Examples
The following are 30
code examples of keras.__version__().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras
, or try the search function
.
Example #1
Source File: backend.py From aetros-cli with MIT License | 6 votes |
def collect_environment(self, overwrite_variables=None): import socket import os import pip import platform env = {} if not overwrite_variables: overwrite_variables = {} import aetros env['aetros_version'] = aetros.__version__ env['python_version'] = platform.python_version() env['python_executable'] = sys.executable env['hostname'] = socket.gethostname() env['variables'] = dict(os.environ) env['variables'].update(overwrite_variables) if 'AETROS_SSH_KEY' in env['variables']: del env['variables']['AETROS_SSH_KEY'] if 'AETROS_SSH_KEY_BASE64' in env['variables']: del env['variables']['AETROS_SSH_KEY_BASE64'] env['pip_packages'] = sorted([[i.key, i.version] for i in pip.get_installed_distributions()]) self.set_system_info('environment', env)
Example #2
Source File: nn.py From mljar-supervised with MIT License | 6 votes |
def __init__(self, params): super(NeuralNetworkAlgorithm, self).__init__(params) self.library_version = keras.__version__ self.rounds = additional.get("one_step", 1) self.max_iters = additional.get("max_steps", 1) self.learner_params = { "dense_layers": params.get("dense_layers"), "dense_1_size": params.get("dense_1_size"), "dense_2_size": params.get("dense_2_size"), "dropout": params.get("dropout"), "learning_rate": params.get("learning_rate"), "momentum": params.get("momentum"), "decay": params.get("decay"), } self.model = None # we need input data shape to construct model if "model_architecture_json" in params: self.model = model_from_json( json.loads(params.get("model_architecture_json")) ) self.compile_model() logger.debug("NeuralNetworkAlgorithm __init__")
Example #3
Source File: Seq2Seq.py From dts with MIT License | 6 votes |
def _get_decoder_initial_states(self): """ Return decoder states as Input layers """ decoder_states_inputs = [] for units in self.encoder_layers: decoder_state_input_h = Input(shape=(units,)) input_states = [decoder_state_input_h] if self.cell == LSTMCell: decoder_state_input_c = Input(shape=(units,)) input_states = [decoder_state_input_h, decoder_state_input_c] decoder_states_inputs.extend(input_states) if keras.__version__ < '2.2': return list(reversed(decoder_states_inputs)) else: return decoder_states_inputs
Example #4
Source File: keras.py From mlflow with Apache License 2.0 | 6 votes |
def _load_model(model_path, keras_module, **kwargs): keras_models = importlib.import_module(keras_module.__name__ + ".models") custom_objects = kwargs.pop("custom_objects", {}) custom_objects_path = None if os.path.isdir(model_path): if os.path.isfile(os.path.join(model_path, _CUSTOM_OBJECTS_SAVE_PATH)): custom_objects_path = os.path.join(model_path, _CUSTOM_OBJECTS_SAVE_PATH) model_path = os.path.join(model_path, _MODEL_SAVE_PATH) if custom_objects_path is not None: import cloudpickle with open(custom_objects_path, "rb") as in_f: pickled_custom_objects = cloudpickle.load(in_f) pickled_custom_objects.update(custom_objects) custom_objects = pickled_custom_objects from distutils.version import StrictVersion if StrictVersion(keras_module.__version__.split('-')[0]) >= StrictVersion("2.2.3"): # NOTE: Keras 2.2.3 does not work with unicode paths in python2. Pass in h5py.File instead # of string to avoid issues. import h5py with h5py.File(os.path.abspath(model_path), "r") as model_path: return keras_models.load_model(model_path, custom_objects=custom_objects, **kwargs) else: # NOTE: Older versions of Keras only handle filepath. return keras_models.load_model(model_path, custom_objects=custom_objects, **kwargs)
Example #5
Source File: wechat_utils.py From Neural-Headline-Generator-CN with GNU General Public License v3.0 | 5 votes |
def prog(self):#Show progress nb_batches_total=(self.params['epochs'] if kv-1 else self.params['nb_epoch'])*(self.params['samples'] if kv-1 else self.params['nb_sample'])/self.params['batch_size'] nb_batches_epoch=(self.params['samples'] if kv-1 else self.params['nb_sample'])/self.params['batch_size'] prog_total=(self.t_batches/nb_batches_total if nb_batches_total else 0)+0.01 prog_epoch=(self.c_batches/nb_batches_epoch if nb_batches_epoch else 0)+0.01 if self.t_epochs: now=time.time() t_mean=float(sum(self.t_epochs)) / len(self.t_epochs) eta_t=(now-self.train_start)*((1/prog_total)-1) eta_e=t_mean*(1-prog_epoch) t_end=time.asctime(time.localtime(now+eta_t)) e_end=time.asctime(time.localtime(now+eta_e)) m='\nTotal:\nProg:'+str(prog_total*100.)[:5]+'%\nEpoch:'+str(self.epoch[-1])+'/'+str(self.stopped_epoch)+'\nETA:'+str(eta_t)[:8]+'sec\nTrain will be finished at '+t_end+'\nCurrent epoch:\nPROG:'+str(prog_epoch*100.)[:5]+'%\nETA:'+str(eta_e)[:8]+'sec\nCurrent epoch will be finished at '+e_end self.t_send(msg=m) print(m) else: now=time.time() eta_t=(now-self.train_start)*((1/prog_total)-1) eta_e=(now-self.train_start)*((1/prog_epoch)-1) t_end=time.asctime(time.localtime(now+eta_t)) e_end=time.asctime(time.localtime(now+eta_e)) m='\nTotal:\nProg:'+str(prog_total*100.)[:5]+'%\nEpoch:'+str(len(self.epoch))+'/'+str(self.stopped_epoch)+'\nETA:'+str(eta_t)[:8]+'sec\nTrain will be finished at '+t_end+'\nCurrent epoch:\nPROG:'+str(prog_epoch*100.)[:5]+'%\nETA:'+str(eta_e)[:8]+'sec\nCurrent epoch will be finished at '+e_end self.t_send(msg=m) print(m) #============================================================================== # #==============================================================================
Example #6
Source File: keras_version.py From CameraRadarFusionNet with Apache License 2.0 | 5 votes |
def assert_keras_version(): """ Assert that the Keras version is up to date. """ detected = keras.__version__ required = '.'.join(map(str, minimum_keras_version)) assert(keras_version() >= minimum_keras_version), 'You are using keras version {}. The minimum required version is {}.'.format(detected, required)
Example #7
Source File: callbacks.py From keras-rl with MIT License | 5 votes |
def on_step_end(self, step, logs): """ Update progression bar at the end of each step """ if self.info_names is None: self.info_names = logs['info'].keys() values = [('reward', logs['reward'])] if KERAS_VERSION > '2.1.3': self.progbar.update((self.step % self.interval) + 1, values=values) else: self.progbar.update((self.step % self.interval) + 1, values=values, force=True) self.step += 1 self.metrics.append(logs['metrics']) if len(self.info_names) > 0: self.infos.append([logs['info'][k] for k in self.info_names])
Example #8
Source File: keras_version.py From keras-retinanet with Apache License 2.0 | 5 votes |
def keras_version(): """ Get the Keras version. Returns tuple of (major, minor, patch). """ return tuple(map(int, keras.__version__.split('.')))
Example #9
Source File: keras_version.py From keras-retinanet with Apache License 2.0 | 5 votes |
def assert_keras_version(): """ Assert that the Keras version is up to date. """ detected = keras.__version__ required = '.'.join(map(str, minimum_keras_version)) assert(keras_version() >= minimum_keras_version), 'You are using keras version {}. The minimum required version is {}.'.format(detected, required)
Example #10
Source File: image_pyfunc.py From models with Apache License 2.0 | 5 votes |
def log_model(keras_model, artifact_path, image_dims, domain): """ Log a KerasImageClassifierPyfunc model as an MLflow artifact for the current run. :param keras_model: Keras model to be saved. :param artifact_path: Run-relative artifact path this model is to be saved to. :param image_dims: Image dimensions the Keras model expects. :param domain: Labels for the classes this model can predict. """ with TempDir() as tmp: data_path = tmp.path("image_model") os.mkdir(data_path) conf = { "image_dims": "/".join(map(str, image_dims)), "domain": "/".join(map(str, domain)) } with open(os.path.join(data_path, "conf.yaml"), "w") as f: yaml.safe_dump(conf, stream=f) keras_path = os.path.join(data_path, "keras_model") mlflow.keras.save_model(keras_model, path=keras_path) conda_env = tmp.path("conda_env.yaml") with open(conda_env, "w") as f: f.write(conda_env_template.format(python_version=PYTHON_VERSION, keras_version=keras.__version__, tf_name=tf.__name__, # can have optional -gpu suffix tf_version=tf.__version__, pillow_version=PIL.__version__)) mlflow.pyfunc.log_model(artifact_path=artifact_path, loader_module=__name__, code_path=[__file__], data_path=data_path, conda_env=conda_env)
Example #11
Source File: image_pyfunc.py From models with Apache License 2.0 | 5 votes |
def log_model(keras_model, artifact_path, image_dims, domain): """ Log a KerasImageClassifierPyfunc model as an MLflow artifact for the current run. :param keras_model: Keras model to be saved. :param artifact_path: Run-relative artifact path this model is to be saved to. :param image_dims: Image dimensions the Keras model expects. :param domain: Labels for the classes this model can predict. """ with TempDir() as tmp: data_path = tmp.path("image_model") os.mkdir(data_path) conf = { "image_dims": "/".join(map(str, image_dims)), "domain": "/".join(map(str, domain)) } with open(os.path.join(data_path, "conf.yaml"), "w") as f: yaml.safe_dump(conf, stream=f) keras_path = os.path.join(data_path, "keras_model") mlflow.keras.save_model(keras_model, path=keras_path) conda_env = tmp.path("conda_env.yaml") with open(conda_env, "w") as f: f.write(conda_env_template.format(python_version=PYTHON_VERSION, keras_version=keras.__version__, tf_name=tf.__name__, # can have optional -gpu suffix tf_version=tf.__version__, pillow_version=PIL.__version__)) mlflow.pyfunc.log_model(artifact_path=artifact_path, loader_module=__name__, code_path=[__file__], data_path=data_path, conda_env=conda_env)
Example #12
Source File: checks.py From deep_qa with Apache License 2.0 | 5 votes |
def log_keras_version_info(): import keras logger.info("Keras version: " + keras.__version__) from keras import backend as K try: backend = K.backend() except AttributeError: backend = K._BACKEND # pylint: disable=protected-access if backend == 'theano': import theano logger.info("Theano version: " + theano.__version__) logger.warning("Using Keras' theano backend is not supported! Expect to crash...") elif backend == 'tensorflow': import tensorflow logger.info("Tensorflow version: " + tensorflow.__version__) # pylint: disable=no-member
Example #13
Source File: keras.py From mlflow with Apache License 2.0 | 5 votes |
def get_default_conda_env(include_cloudpickle=False, keras_module=None): """ :return: The default Conda environment for MLflow Models produced by calls to :func:`save_model()` and :func:`log_model()`. """ import tensorflow as tf conda_deps = [] # if we use tf.keras we only need to declare dependency on tensorflow pip_deps = [] if keras_module is None: import keras keras_module = keras if keras_module.__name__ == "keras": # Temporary fix: the created conda environment has issues installing keras >= 2.3.1 if LooseVersion(keras_module.__version__) < LooseVersion('2.3.1'): conda_deps.append("keras=={}".format(keras_module.__version__)) else: pip_deps.append("keras=={}".format(keras_module.__version__)) if include_cloudpickle: import cloudpickle pip_deps.append("cloudpickle=={}".format(cloudpickle.__version__)) # Temporary fix: conda-forge currently does not have tensorflow > 1.14 # The Keras pyfunc representation requires the TensorFlow # backend for Keras. Therefore, the conda environment must # include TensorFlow if LooseVersion(tf.__version__) <= LooseVersion('1.13.2'): conda_deps.append("tensorflow=={}".format(tf.__version__)) else: pip_deps.append("tensorflow=={}".format(tf.__version__)) return _mlflow_conda_env( additional_conda_deps=conda_deps, additional_pip_deps=pip_deps, additional_conda_channels=None)
Example #14
Source File: keras.py From mlflow with Apache License 2.0 | 5 votes |
def _load_pyfunc(path): """ Load PyFunc implementation. Called by ``pyfunc.load_pyfunc``. :param path: Local filesystem path to the MLflow Model with the ``keras`` flavor. """ import tensorflow as tf if os.path.isfile(os.path.join(path, _KERAS_MODULE_SPEC_PATH)): with open(os.path.join(path, _KERAS_MODULE_SPEC_PATH), "r") as f: keras_module = importlib.import_module(f.read()) else: import keras keras_module = keras K = importlib.import_module(keras_module.__name__ + ".backend") if keras_module.__name__ == "tensorflow.keras" or K.backend() == 'tensorflow': if LooseVersion(tf.__version__) < LooseVersion('2.0.0'): graph = tf.Graph() sess = tf.Session(graph=graph) # By default tf backed models depend on the global graph and session. # We create an use new Graph and Session and store them with the model # This way the model is independent on the global state. with graph.as_default(): with sess.as_default(): # pylint:disable=not-context-manager K.set_learning_phase(0) m = _load_model(path, keras_module=keras_module, compile=False) return _KerasModelWrapper(m, graph, sess) else: K.set_learning_phase(0) m = _load_model(path, keras_module=keras_module, compile=False) return _KerasModelWrapper(m, None, None) else: raise MlflowException("Unsupported backend '%s'" % K._BACKEND)
Example #15
Source File: image_pyfunc.py From mlflow with Apache License 2.0 | 5 votes |
def log_model(keras_model, artifact_path, image_dims, domain): """ Log a KerasImageClassifierPyfunc model as an MLflow artifact for the current run. :param keras_model: Keras model to be saved. :param artifact_path: Run-relative artifact path this model is to be saved to. :param image_dims: Image dimensions the Keras model expects. :param domain: Labels for the classes this model can predict. """ with TempDir() as tmp: data_path = tmp.path("image_model") os.mkdir(data_path) conf = { "image_dims": "/".join(map(str, image_dims)), "domain": "/".join(map(str, domain)) } with open(os.path.join(data_path, "conf.yaml"), "w") as f: yaml.safe_dump(conf, stream=f) keras_path = os.path.join(data_path, "keras_model") mlflow.keras.save_model(keras_model, path=keras_path) conda_env = tmp.path("conda_env.yaml") with open(conda_env, "w") as f: f.write(conda_env_template.format(python_version=PYTHON_VERSION, keras_version=keras.__version__, tf_name=tf.__name__, # can have optional -gpu suffix tf_version=tf.__version__, pip_version=pip.__version__, pillow_version=PIL.__version__)) mlflow.pyfunc.log_model(artifact_path=artifact_path, loader_module=__name__, code_path=[__file__], data_path=data_path, conda_env=conda_env)
Example #16
Source File: topology.py From KerasNeuralFingerprint with MIT License | 5 votes |
def _updated_config(self): '''shared between different serialization methods''' from keras import __version__ as keras_version config = self.get_config() model_config = { 'class_name': self.__class__.__name__, 'config': config, 'keras_version': keras_version } return model_config
Example #17
Source File: version.py From keras-vggface with MIT License | 5 votes |
def pretty_versions(): import keras import tensorflow as tf k_version = keras.__version__ t_version = tf.__version__ return "keras-vggface : {}, keras : {} , tensorflow : {} ".format(__version__,k_version,t_version)
Example #18
Source File: keras_version.py From keras-m2det with Apache License 2.0 | 5 votes |
def keras_version(): """ Get the Keras version. Returns tuple of (major, minor, patch). """ return tuple(map(int, keras.__version__.split('.')))
Example #19
Source File: keras_version.py From keras-m2det with Apache License 2.0 | 5 votes |
def assert_keras_version(): """ Assert that the Keras version is up to date. """ detected = keras.__version__ required = '.'.join(map(str, minimum_keras_version)) assert(keras_version() >= minimum_keras_version), 'You are using keras version {}. The minimum required version is {}.'.format(detected, required)
Example #20
Source File: keras_version.py From PL-ZSD_Release with MIT License | 5 votes |
def keras_version(): return tuple(map(int, keras.__version__.split('.')))
Example #21
Source File: keras_version.py From PL-ZSD_Release with MIT License | 5 votes |
def assert_keras_version(): detected = keras.__version__ required = '.'.join(map(str, minimum_keras_version)) assert(keras_version() >= minimum_keras_version), 'You are using keras version {}. The minimum required version is {}.'.format(detected, required)
Example #22
Source File: keras_version.py From DeepForest with MIT License | 5 votes |
def keras_version(): """ Get the Keras version. Returns tuple of (major, minor, patch). """ return tuple(map(int, keras.__version__.split('.')))
Example #23
Source File: utils_keras.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def conv_2d(filters, kernel_shape, strides, padding, input_shape=None): """ Defines the right convolutional layer according to the version of Keras that is installed. :param filters: (required integer) the dimensionality of the output space (i.e. the number output of filters in the convolution) :param kernel_shape: (required tuple or list of 2 integers) specifies the strides of the convolution along the width and height. :param padding: (required string) can be either 'valid' (no padding around input or feature map) or 'same' (pad to ensure that the output feature map size is identical to the layer input) :param input_shape: (optional) give input shape if this is the first layer of the model :return: the Keras layer """ if LooseVersion(keras.__version__) >= LooseVersion('2.0.0'): if input_shape is not None: return Conv2D(filters=filters, kernel_size=kernel_shape, strides=strides, padding=padding, input_shape=input_shape) else: return Conv2D(filters=filters, kernel_size=kernel_shape, strides=strides, padding=padding) else: if input_shape is not None: return Convolution2D(filters, kernel_shape[0], kernel_shape[1], subsample=strides, border_mode=padding, input_shape=input_shape) else: return Convolution2D(filters, kernel_shape[0], kernel_shape[1], subsample=strides, border_mode=padding)
Example #24
Source File: models.py From gandlf with MIT License | 5 votes |
def save_model(model, filepath, overwrite=True): def get_json_type(obj): if hasattr(obj, 'get_config'): return {'class_name': obj.__class__.__name__, 'config': obj.get_config()} if type(obj).__module__ == np.__name__: return obj.item() if callable(obj) or type(obj).__name__ == type.__name__: return obj.__name__ raise TypeError('Not JSON Serializable:', obj) import h5py from keras import __version__ as keras_version if not overwrite and os.path.isfile(filepath): proceed = keras.models.ask_to_proceed_with_overwrite(filepath) if not proceed: return f = h5py.File(filepath, 'w') f.attrs['keras_version'] = str(keras_version).encode('utf8') f.attrs['generator_config'] = json.dumps({ 'class_name': model.discriminator.__class__.__name__, 'config': model.generator.get_config(), }, default=get_json_type).encode('utf8') f.attrs['discriminator_config'] = json.dumps({ 'class_name': model.discriminator.__class__.__name__, 'config': model.discriminator.get_config(), }, default=get_json_type).encode('utf8') generator_weights_group = f.create_group('generator_weights') discriminator_weights_group = f.create_group('discriminator_weights') model.generator.save_weights_to_hdf5_group(generator_weights_group) model.discriminator.save_weights_to_hdf5_group(discriminator_weights_group) f.flush() f.close()
Example #25
Source File: backend.py From aetros-cli with MIT License | 5 votes |
def upload_keras_graph(self, model): from aetros.keras import model_to_graph import keras if keras.__version__[0] == '2': graph = model_to_graph(model) self.set_graph(graph)
Example #26
Source File: Trainer.py From aetros-cli with MIT License | 5 votes |
def set_generator_validation_nb(self, number): """ sets self.nb_val_samples which is used in model.fit if input is a generator :param number: :return: """ self.nb_val_samples = number diff_to_batch = number % self.get_batch_size() if diff_to_batch > 0: self.nb_val_samples += self.get_batch_size() - diff_to_batch import keras if '1' != keras.__version__[0]: self.nb_val_samples = self.nb_val_samples // self.get_batch_size()
Example #27
Source File: utils_keras.py From robust_physical_perturbations with MIT License | 5 votes |
def conv_2d(filters, kernel_shape, strides, padding, input_shape=None): """ Defines the right convolutional layer according to the version of Keras that is installed. :param filters: (required integer) the dimensionality of the output space (i.e. the number output of filters in the convolution) :param kernel_shape: (required tuple or list of 2 integers) specifies the strides of the convolution along the width and height. :param padding: (required string) can be either 'valid' (no padding around input or feature map) or 'same' (pad to ensure that the output feature map size is identical to the layer input) :param input_shape: (optional) give input shape if this is the first layer of the model :return: the Keras layer """ if LooseVersion(keras.__version__) >= LooseVersion('2.0.0'): print "Using Keras version", keras.__version__ if input_shape is not None: return Conv2D(filters=filters, kernel_size=kernel_shape, strides=strides, padding=padding, input_shape=input_shape) else: return Conv2D(filters=filters, kernel_size=kernel_shape, strides=strides, padding=padding) else: print "Using *old* keras version", keras.__version__ if input_shape is not None: return Convolution2D(filters, kernel_shape[0], kernel_shape[1], subsample=strides, border_mode=padding, input_shape=input_shape) else: return Convolution2D(filters, kernel_shape[0], kernel_shape[1], subsample=strides, border_mode=padding)
Example #28
Source File: utils_keras.py From robust_physical_perturbations with MIT License | 5 votes |
def conv_2d(filters, kernel_shape, strides, padding, input_shape=None): """ Defines the right convolutional layer according to the version of Keras that is installed. :param filters: (required integer) the dimensionality of the output space (i.e. the number output of filters in the convolution) :param kernel_shape: (required tuple or list of 2 integers) specifies the strides of the convolution along the width and height. :param padding: (required string) can be either 'valid' (no padding around input or feature map) or 'same' (pad to ensure that the output feature map size is identical to the layer input) :param input_shape: (optional) give input shape if this is the first layer of the model :return: the Keras layer """ if LooseVersion(keras.__version__) >= LooseVersion('2.0.0'): print "Using Keras version", keras.__version__ if input_shape is not None: return Conv2D(filters=filters, kernel_size=kernel_shape, strides=strides, padding=padding, input_shape=input_shape) else: return Conv2D(filters=filters, kernel_size=kernel_shape, strides=strides, padding=padding) else: print "Using *old* keras version", keras.__version__ if input_shape is not None: return Convolution2D(filters, kernel_shape[0], kernel_shape[1], subsample=strides, border_mode=padding, input_shape=input_shape) else: return Convolution2D(filters, kernel_shape[0], kernel_shape[1], subsample=strides, border_mode=padding)
Example #29
Source File: keras_version.py From ImageAI with MIT License | 5 votes |
def keras_version(): return tuple(map(int, keras.__version__.split('.')))
Example #30
Source File: keras_version.py From ImageAI with MIT License | 5 votes |
def assert_keras_version(): detected = keras.__version__ required = '.'.join(map(str, minimum_keras_version)) assert(keras_version() >= minimum_keras_version), 'You are using keras version {}. The minimum required version is {}.'.format(detected, required)