Python keras.metrics() Examples
The following are 9
code examples of keras.metrics().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras
, or try the search function
.
Example #1
Source File: deep_models.py From urgent-care-comparative with GNU General Public License v3.0 | 6 votes |
def lstm_model(input_shape, hidden = 256, targets = 1, learn_rate = 1e-4, multiclass=False): model = Sequential() model.add(Bidirectional(LSTM(hidden), merge_mode = 'concat')) model.add(Activation('tanh')) model.add(Dropout(0.5)) if (targets > 1) and not multiclass: model.add(Bidirectional(LSTM(hidden), merge_mode = 'concat')) model.add(Activation('tanh')) model.add(Dropout(0.5)) model.add(Dense(targets)) if multiclass: model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=learn_rate, beta_1 =.5 ), metrics=['categorical_accuracy']) else: model.add(Activation ('sigmoid')) model.compile(loss='binary_crossentropy', optimizer=Adam(lr=learn_rate, beta_1 =.5 ), metrics=['accuracy']) return (model)
Example #2
Source File: deep_models.py From urgent-care-comparative with GNU General Public License v3.0 | 6 votes |
def cnn_model(input_shape, hidden = 256, targets = 1, learn_rate = 1e-4): model = Sequential() model.add(Convolution1D(input_shape = input_shape, nb_filter = 64, filter_length = 3, border_mode = 'same', activation = 'relu')) model.add(MaxPooling1D(pool_length = 3)) model.add(Bidirectional(LSTM(hidden), merge_mode = 'concat')) model.add(Activation('tanh')) model.add(Dropout(0.5)) model.add(Dense(targets)) if multiclass: model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=learn_rate, beta_1 =.5 ), metrics=['categorical_accuracy']) else: model.add(Activation ('sigmoid')) model.compile(loss='binary_crossentropy', optimizer=Adam(lr=learn_rate, beta_1 =.5 ), metrics=['accuracy']) return (model)
Example #3
Source File: deep_models.py From urgent-care-comparative with GNU General Public License v3.0 | 6 votes |
def mlp_model(input_shape, hidden =512, targets = 1, multiclass = False, learn_rate = 1e-4): model = Sequential() model.add(Dense(hidden, activation = 'relu', input_shape = input_shape)) model.add(Dropout(.5)) model.add(Dense(hidden, activation = 'relu')) model.add(Dropout(.5)) model.add(Dense(hidden, activation = 'relu')) model.add(Dropout(.5)) model.add(Dense(targets)) if multiclass: model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=learn_rate, beta_1 =.5 ), metrics=['categorical_accuracy']) else: model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer=Adam(lr=learn_rate, beta_1 =.5 ), metrics=['accuracy']) return (model)
Example #4
Source File: deep_models.py From urgent-care-comparative with GNU General Public License v3.0 | 6 votes |
def hierarchical_cnn (input_shape, aux_shape, targets = 1, hidden = 256, multiclass = False, learn_rate=1e-4): x = Input(shape = input_shape, name = 'x') xx = Convolution1D(nb_filter = 64, filter_length = 3, border_mode = 'same', activation = 'relu') (x) xx = MaxPooling1D(pool_length = 3) (xx) xx = Bidirectional(LSTM (256, activation = 'relu'), merge_mode = 'concat') (xx) xx = Dropout(0.5)(xx) dx = Input(shape = aux_shape, name = 'aux') xx = concatenate([xx, dx]) if multiclass: y = Dense(targets, activation = 'softmax') (xx) model = Model(inputs = [x, dx], outputs = [y]) model.compile (loss = 'categorical_crossentropy', optimizer = Adam(lr = learn_rate), metrics = ['categorical_accuracy']) else: y = Dense(targets, activation = 'sigmoid') (xx) model = Model(inputs = [x, dx], outputs = [y]) model.compile (loss = 'binary_crossentropy', optimizer = Adam(lr = learn_rate), metrics = ['accuracy']) return (model)
Example #5
Source File: deep_models.py From urgent-care-comparative with GNU General Public License v3.0 | 6 votes |
def hierarchical_lstm (input_shape, aux_shape, targets = 1, hidden = 256, multiclass = False, learn_rate = 1e-4): x = Input(shape = input_shape, name = 'x') xx = Bidirectional(LSTM (hidden, activation = 'relu'), merge_mode = 'concat') (x) xx = Dropout(0.5)(xx) dx = Input(shape = aux_shape, name = 'aux') xx = concatenate([xx, dx]) xx = Dense(512, activation = 'relu') (xx) if multiclass: y = Dense(targets, activation = 'softmax') (xx) model = Model(inputs = [x, dx], outputs = [y]) model.compile (loss = 'categorical_crossentropy', optimizer = Adam(lr = learn_rate), metrics = ['categorical_accuracy']) else: y = Dense(targets, activation = 'sigmoid') (xx) model = Model(inputs = [x, dx], outputs = [y]) model.compile (loss = 'binary_crossentropy', optimizer = Adam(lr = learn_rate), metrics = ['accuracy']) return (model)
Example #6
Source File: multiclass.py From intent_classifier with Apache License 2.0 | 6 votes |
def infer_on_batch(self, batch, labels=None): """ Method infers the model on the given batch Args: batch - list of texts labels - list of labels Returns: loss and metrics values on the given batch, if labels are given predictions, otherwise """ texts = batch if labels: features = self.texts2vec(texts) onehot_labels = labels2onehot(labels, classes=self.classes) metrics_values = self.model.test_on_batch(features, onehot_labels.reshape(-1, self.n_classes)) return metrics_values else: features = self.texts2vec(texts) predictions = self.model.predict(features) return predictions
Example #7
Source File: Seq2Seq.py From dts with MIT License | 5 votes |
def evaluate(self, data, fn_inverse=None, horizon=1, fn_plot=None): """ Evaluate model :return: """ encoder_input_data, decoder_input_exog, y = data y_hat = self.predict(encoder_inputs=encoder_input_data, pred_steps=horizon, decoder_input_exog=decoder_input_exog) if fn_inverse is not None: y = fn_inverse(y) y_hat = fn_inverse(y_hat) y = np.float32(y) y_hat = np.float32(y_hat) if fn_plot is not None: fn_plot([y,y_hat]) results = [] for m in self.model.metrics: if isinstance(m, str): results.append(K.eval(K.mean(get(m)(y, y_hat)))) else: results.append(K.eval(K.mean(m(y, y_hat)))) return results
Example #8
Source File: Seq2Seq.py From dts with MIT License | 5 votes |
def evaluate(self, data, fn_inverse=None, fn_plot=None): try: encoder_inputs, decoder_inputs, decoder_inputs_exog, y = data y_hat = self.model.predict([encoder_inputs, decoder_inputs, decoder_inputs_exog]) except: encoder_inputs, decoder_inputs, y = data y_hat = self.model.predict([encoder_inputs, decoder_inputs]) if fn_inverse is not None: y = fn_inverse(y) y_hat = fn_inverse(y_hat) y = np.float32(y) y_hat = np.float32(y_hat) if fn_plot is not None: fn_plot([y, y_hat]) results = [] for m in self.model.metrics: if isinstance(m, str): results.append(K.eval(K.mean(get(m)(y, y_hat)))) else: results.append(K.eval(K.mean(m(y, y_hat)))) return results
Example #9
Source File: multiclass.py From intent_classifier with Apache License 2.0 | 5 votes |
def train_on_batch(self, batch): """ Method trains the intent_model on the given batch Args: batch - list of tuples (preprocessed text, labels) Returns: loss and metrics values on the given batch """ texts = list(batch[0]) labels = list(batch[1]) features = self.texts2vec(texts) onehot_labels = labels2onehot(labels, classes=self.classes) metrics_values = self.model.train_on_batch(features, onehot_labels) return metrics_values