Python keras.applications() Examples
The following are 8
code examples of keras.applications().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras
, or try the search function
.
Example #1
Source File: densenet.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format {backbone}_weights_tf_dim_ordering_tf_ kernels_notop where backbone is the densenet + number of layers (e.g. densenet121). For more info check the explanation from the keras densenet script itself: https://github.com/keras-team/keras/blob/master/keras/applications /densenet.py """ origin = 'https://github.com/fchollet/deep-learning-models/releases/'\ 'download/v0.8/' file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5' # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError( 'Weights for "channels_first" format are not available.') weights_url = origin + file_name.format(self.backbone) return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models')
Example #2
Source File: densenet.py From DeepForest with MIT License | 6 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format {backbone}_weights_tf_dim_ordering_tf_kernels_notop where backbone is the densenet + number of layers (e.g. densenet121). For more info check the explanation from the keras densenet script itself: https://github.com/keras-team/keras/blob/master/keras/applications/densenet.py """ origin = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/' file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5' # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError('Weights for "channels_first" format are not available.') weights_url = origin + file_name.format(self.backbone) return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models')
Example #3
Source File: densenet.py From CameraRadarFusionNet with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format {backbone}_weights_tf_dim_ordering_tf_kernels_notop where backbone is the densenet + number of layers (e.g. densenet121). For more info check the explanation from the keras densenet script itself: https://github.com/keras-team/keras/blob/master/keras/applications/densenet.py """ origin = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/' file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5' # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError('Weights for "channels_first" format are not available.') weights_url = origin + file_name.format(self.backbone) return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models')
Example #4
Source File: densenet.py From keras-retinanet with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format {backbone}_weights_tf_dim_ordering_tf_kernels_notop where backbone is the densenet + number of layers (e.g. densenet121). For more info check the explanation from the keras densenet script itself: https://github.com/keras-team/keras/blob/master/keras/applications/densenet.py """ origin = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/' file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5' # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError('Weights for "channels_first" format are not available.') weights_url = origin + file_name.format(self.backbone) return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models')
Example #5
Source File: densenet.py From keras-m2det with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format {backbone}_weights_tf_dim_ordering_tf_kernels_notop where backbone is the densenet + number of layers (e.g. densenet121). For more info check the explanation from the keras densenet script itself: https://github.com/keras-team/keras/blob/master/keras/applications/densenet.py """ origin = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/' file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5' # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError('Weights for "channels_first" format are not available.') weights_url = origin + file_name.format(self.backbone) return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models')
Example #6
Source File: cnn_face_attr_celeba.py From transparent_latent_gan with MIT License | 5 votes |
def create_cnn_model(size_output=None, tf_print=False): """ create keras model with convolution layers of MobileNet and added fully connected layers on to top :param size_output: number of nodes in the output layer :param tf_print: True/False to print :return: keras model object """ if size_output is None: # get number of attrubutes, needed for defining the final layer size of network df_attr = pd.read_csv(path_celeba_att, sep='\s+', header=1, index_col=0) size_output = df_attr.shape[1] # Load the convolutional layers of pretrained model: mobilenet base_model = keras.applications.mobilenet.MobileNet(include_top=False, input_shape=(128,128,3), alpha=1, depth_multiplier=1, dropout=0.001, weights="imagenet", input_tensor=None, pooling=None) # add fully connected layers fc0 = base_model.output fc0_pool = layers.GlobalAveragePooling2D(data_format='channels_last', name='fc0_pool')(fc0) fc1 = layers.Dense(256, activation='relu', name='fc1_dense')(fc0_pool) fc2 = layers.Dense(size_output, activation='tanh', name='fc2_dense')(fc1) model = keras.models.Model(inputs=base_model.input, outputs=fc2) # freeze the early layers for layer in base_model.layers: layer.trainable = False model.compile(optimizer='sgd', loss='mean_squared_error') if tf_print: print('use convolution layers of MobileNet, add fully connected layers') print(model.summary()) return model
Example #7
Source File: tripletloss.py From tripletloss-keras-tensorflow with MIT License | 5 votes |
def t_read_image(loc): t_image = cv2.imread(loc) t_image = cv2.resize(t_image, (T_G_HEIGHT,T_G_WIDTH)) t_image = t_image.astype("float32") t_image = keras.applications.resnet50.preprocess_input(t_image, data_format='channels_last') return t_image # loads a set of images from a text index file
Example #8
Source File: tripletloss.py From tripletloss-keras-tensorflow with MIT License | 4 votes |
def createModel(emb_size): # Initialize a ResNet50_ImageNet Model resnet_input = kl.Input(shape=(T_G_WIDTH,T_G_HEIGHT,T_G_NUMCHANNELS)) resnet_model = keras.applications.resnet50.ResNet50(weights='imagenet', include_top = False, input_tensor=resnet_input) # New Layers over ResNet50 net = resnet_model.output #net = kl.Flatten(name='flatten')(net) net = kl.GlobalAveragePooling2D(name='gap')(net) #net = kl.Dropout(0.5)(net) net = kl.Dense(emb_size,activation='relu',name='t_emb_1')(net) net = kl.Lambda(lambda x: K.l2_normalize(x,axis=1), name='t_emb_1_l2norm')(net) # model creation base_model = Model(resnet_model.input, net, name="base_model") # triplet framework, shared weights input_shape=(T_G_WIDTH,T_G_HEIGHT,T_G_NUMCHANNELS) input_anchor = kl.Input(shape=input_shape, name='input_anchor') input_positive = kl.Input(shape=input_shape, name='input_pos') input_negative = kl.Input(shape=input_shape, name='input_neg') net_anchor = base_model(input_anchor) net_positive = base_model(input_positive) net_negative = base_model(input_negative) # The Lamda layer produces output using given function. Here its Euclidean distance. positive_dist = kl.Lambda(euclidean_distance, name='pos_dist')([net_anchor, net_positive]) negative_dist = kl.Lambda(euclidean_distance, name='neg_dist')([net_anchor, net_negative]) tertiary_dist = kl.Lambda(euclidean_distance, name='ter_dist')([net_positive, net_negative]) # This lambda layer simply stacks outputs so both distances are available to the objective stacked_dists = kl.Lambda(lambda vects: K.stack(vects, axis=1), name='stacked_dists')([positive_dist, negative_dist, tertiary_dist]) model = Model([input_anchor, input_positive, input_negative], stacked_dists, name='triple_siamese') # Setting up optimizer designed for variable learning rate # Variable Learning Rate per Layers lr_mult_dict = {} last_layer = '' for layer in resnet_model.layers: # comment this out to refine earlier layers # layer.trainable = False # print layer.name lr_mult_dict[layer.name] = 1 # last_layer = layer.name lr_mult_dict['t_emb_1'] = 100 base_lr = 0.0001 momentum = 0.9 v_optimizer = LR_SGD(lr=base_lr, momentum=momentum, decay=0.0, nesterov=False, multipliers = lr_mult_dict) model.compile(optimizer=v_optimizer, loss=triplet_loss, metrics=[accuracy]) return model