Python tensorflow.python.framework.tensor_util.make_tensor_proto() Examples
The following are 30
code examples of tensorflow.python.framework.tensor_util.make_tensor_proto().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.framework.tensor_util
, or try the search function
.
Example #1
Source File: _graph_cvt.py From keras-onnx with MIT License | 6 votes |
def _populate_const_op(output_node, node_name, dtype, data, data_shape): """Creates a Const op. Args: output_node: TensorFlow NodeDef. node_name: str node name. dtype: AttrValue with a populated .type field. data: numpy data value. data_shape: Tuple of integers containing data shape. """ output_node.op = "Const" output_node.name = node_name output_node.attr["dtype"].CopyFrom(dtype) tensor = tensor_util.make_tensor_proto( data, dtype=dtype.type, shape=data_shape) output_node.attr["value"].tensor.CopyFrom(tensor)
Example #2
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testIntTypes(self): for dtype, nptype in [ (tf.int32, np.int32), (tf.uint8, np.uint8), (tf.uint16, np.uint16), (tf.int16, np.int16), (tf.int8, np.int8)]: # Test with array. t = tensor_util.make_tensor_proto([10, 20, 30], dtype=dtype) self.assertEquals(dtype, t.dtype) self.assertProtoEquals("dim { size: 3 }", t.tensor_shape) a = tensor_util.MakeNdarray(t) self.assertEquals(nptype, a.dtype) self.assertAllClose(np.array([10, 20, 30], dtype=nptype), a) # Test with ndarray. t = tensor_util.make_tensor_proto(np.array([10, 20, 30], dtype=nptype)) self.assertEquals(dtype, t.dtype) self.assertProtoEquals("dim { size: 3 }", t.tensor_shape) a = tensor_util.MakeNdarray(t) self.assertEquals(nptype, a.dtype) self.assertAllClose(np.array([10, 20, 30], dtype=nptype), a)
Example #3
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testComplex64N(self): t = tensor_util.make_tensor_proto([(1+2j), (3+4j), (5+6j)], shape=[1, 3], dtype=tf.complex64) self.assertProtoEquals(""" dtype: DT_COMPLEX64 tensor_shape { dim { size: 1 } dim { size: 3 } } scomplex_val: 1 scomplex_val: 2 scomplex_val: 3 scomplex_val: 4 scomplex_val: 5 scomplex_val: 6 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.complex64, a.dtype) self.assertAllEqual(np.array([[(1+2j), (3+4j), (5+6j)]]), a)
Example #4
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testComplex64NpArray(self): t = tensor_util.make_tensor_proto( np.array([[(1+2j), (3+4j)], [(5+6j), (7+8j)]]), dtype=tf.complex64) # scomplex_val are real_0, imag_0, real_1, imag_1, ... self.assertProtoEquals(""" dtype: DT_COMPLEX64 tensor_shape { dim { size: 2 } dim { size: 2 } } scomplex_val: 1 scomplex_val: 2 scomplex_val: 3 scomplex_val: 4 scomplex_val: 5 scomplex_val: 6 scomplex_val: 7 scomplex_val: 8 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.complex64, a.dtype) self.assertAllEqual(np.array([[(1+2j), (3+4j)], [(5+6j), (7+8j)]]), a)
Example #5
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testHalf(self): t = tensor_util.make_tensor_proto(np.array([10.0, 20.0], dtype=np.float16)) self.assertProtoEquals(""" dtype: DT_HALF tensor_shape { dim { size: 2 } } half_val: 18688 half_val: 19712 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.float16, a.dtype) self.assertAllClose(np.array([10.0, 20.0], dtype=np.float16), a)
Example #6
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testComplex128NpArray(self): t = tensor_util.make_tensor_proto( np.array([[(1+2j), (3+4j)], [(5+6j), (7+8j)]]), dtype=tf.complex128) # scomplex_val are real_0, imag_0, real_1, imag_1, ... self.assertProtoEquals(""" dtype: DT_COMPLEX128 tensor_shape { dim { size: 2 } dim { size: 2 } } dcomplex_val: 1 dcomplex_val: 2 dcomplex_val: 3 dcomplex_val: 4 dcomplex_val: 5 dcomplex_val: 6 dcomplex_val: 7 dcomplex_val: 8 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.complex128, a.dtype) self.assertAllEqual(np.array([[(1+2j), (3+4j)], [(5+6j), (7+8j)]]), a)
Example #7
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testShapeTooLarge(self): with self.assertRaises(ValueError): tensor_util.make_tensor_proto(np.array([1, 2]), shape=[1])
Example #8
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testStringN(self): t = tensor_util.make_tensor_proto([b"foo", b"bar", b"baz"], shape=[1, 3]) self.assertProtoEquals(""" dtype: DT_STRING tensor_shape { dim { size: 1 } dim { size: 3 } } string_val: "foo" string_val: "bar" string_val: "baz" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.object, a.dtype) self.assertAllEqual(np.array([[b"foo", b"bar", b"baz"]]), a)
Example #9
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testStringNpArray(self): t = tensor_util.make_tensor_proto(np.array([[b"a", b"ab"], [b"abc", b"abcd"]])) self.assertProtoEquals(""" dtype: DT_STRING tensor_shape { dim { size: 2 } dim { size: 2 } } string_val: "a" string_val: "ab" string_val: "abc" string_val: "abcd" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.object, a.dtype) self.assertAllEqual(np.array([[b"a", b"ab"], [b"abc", b"abcd"]]), a)
Example #10
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testStringNestedTuple(self): t = tensor_util.make_tensor_proto(((b"a", b"ab"), (b"abc", b"abcd"))) self.assertProtoEquals(""" dtype: DT_STRING tensor_shape { dim { size: 2 } dim { size: 2 } } string_val: "a" string_val: "ab" string_val: "abc" string_val: "abcd" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.object, a.dtype) self.assertAllEqual(np.array(((b"a", b"ab"), (b"abc", b"abcd"))), a)
Example #11
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testComplex64(self): t = tensor_util.make_tensor_proto((1+2j), dtype=tf.complex64) self.assertProtoEquals(""" dtype: DT_COMPLEX64 tensor_shape {} scomplex_val: 1 scomplex_val: 2 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.complex64, a.dtype) self.assertAllEqual(np.array(1 + 2j), a)
Example #12
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testComplex128(self): t = tensor_util.make_tensor_proto((1+2j), dtype=tf.complex128) self.assertProtoEquals(""" dtype: DT_COMPLEX128 tensor_shape {} dcomplex_val: 1 dcomplex_val: 2 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.complex128, a.dtype) self.assertAllEqual(np.array(1 + 2j), a)
Example #13
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testComplexWithImplicitRepeat(self): for dtype, np_dtype in [(tf.complex64, np.complex64), (tf.complex128, np.complex128)]: t = tensor_util.make_tensor_proto((1+1j), shape=[3, 4], dtype=dtype) a = tensor_util.MakeNdarray(t) self.assertAllClose(np.array([[(1+1j), (1+1j), (1+1j), (1+1j)], [(1+1j), (1+1j), (1+1j), (1+1j)], [(1+1j), (1+1j), (1+1j), (1+1j)]], dtype=np_dtype), a)
Example #14
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testUnsupportedDType(self): with self.assertRaises(TypeError): tensor_util.make_tensor_proto(np.array([1]), 0)
Example #15
Source File: optimize_for_inference_test.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def set_attr_tensor(self, node, key, value, dtype, shape=None): node.attr[key].CopyFrom( attr_value_pb2.AttrValue(tensor=tensor_util.make_tensor_proto( value, dtype=dtype, shape=shape)))
Example #16
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testLowRankSupported(self): t = tensor_util.make_tensor_proto(np.array(7)) self.assertProtoEquals(""" dtype: DT_INT64 tensor_shape {} int64_val: 7 """, t)
Example #17
Source File: graph_util_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def set_attr_tensor(self, node, key, value, dtype, shape=None): node.attr[key].CopyFrom(tf.AttrValue( tensor=tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape)))
Example #18
Source File: quantize_graph.py From deep_image_model with Apache License 2.0 | 5 votes |
def set_attr_tensor(node, key, value, dtype, shape=None): try: node.attr[key].CopyFrom(tf.AttrValue( tensor=tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape))) except KeyError: pass
Example #19
Source File: quantize_graph.py From tensorflow-for-poets-2 with Apache License 2.0 | 5 votes |
def set_attr_tensor(node, key, value, dtype, shape=None): try: node.attr[key].CopyFrom( attr_value_pb2.AttrValue(tensor=tensor_util.make_tensor_proto( value, dtype=dtype, shape=shape))) except KeyError: pass
Example #20
Source File: quantize_graph.py From MobileNet with Apache License 2.0 | 5 votes |
def set_attr_tensor(node, key, value, dtype, shape=None): try: node.attr[key].CopyFrom( attr_value_pb2.AttrValue(tensor=tensor_util.make_tensor_proto( value, dtype=dtype, shape=shape))) except KeyError: pass
Example #21
Source File: quantize_graph.py From sketch-to-react-native with MIT License | 5 votes |
def set_attr_tensor(node, key, value, dtype, shape=None): try: node.attr[key].CopyFrom( attr_value_pb2.AttrValue(tensor=tensor_util.make_tensor_proto( value, dtype=dtype, shape=shape))) except KeyError: pass
Example #22
Source File: quantize_graph.py From pokemon-mini with Apache License 2.0 | 5 votes |
def set_attr_tensor(node, key, value, dtype, shape=None): try: node.attr[key].CopyFrom( attr_value_pb2.AttrValue(tensor=tensor_util.make_tensor_proto( value, dtype=dtype, shape=shape))) except KeyError: pass
Example #23
Source File: quantize_graph.py From AudioNet with MIT License | 5 votes |
def set_attr_tensor(node, key, value, dtype, shape=None): try: node.attr[key].CopyFrom( attr_value_pb2.AttrValue(tensor=tensor_util.make_tensor_proto( value, dtype=dtype, shape=shape))) except KeyError: pass
Example #24
Source File: generic_predict_client.py From cloud-ml-sdk with Apache License 2.0 | 5 votes |
def predict(server, model, data, timeout=10.0): """Request generic gRPC server with specified data. Args: server: The address of server. Example: "localhost:9000". model: The name of the model. Example: "mnist". data: The json data to request. Example: {"keys_dtype": "int32", "keys": [[1], [2]]}. Returns: The predict result in dictionary format. Example: {"keys": [1, 2]}. """ host, port = server.split(":") channel = implementations.insecure_channel(host, int(port)) stub = prediction_service_pb2.beta_create_PredictionService_stub(channel) request = predict_pb2.PredictRequest() request.model_spec.name = model for k, v in data.items(): if k.endswith("_dtype") == False: numpy_data = np.array(v) dtype = data[k + "_dtype"] request.inputs[k].CopyFrom(tensor_util.make_tensor_proto(numpy_data, dtype=dtype)) result = stub.Predict(request, timeout) result_dict = {} for k, v in result.outputs.items(): result_dict[k] = get_tensor_values(v) return result_dict
Example #25
Source File: optimize_for_inference_test.py From keras-lambda with MIT License | 5 votes |
def set_attr_tensor(self, node, key, value, dtype, shape=None): node.attr[key].CopyFrom( attr_value_pb2.AttrValue(tensor=tensor_util.make_tensor_proto( value, dtype=dtype, shape=shape)))
Example #26
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testFloatSizes2(self): t = tensor_util.make_tensor_proto([10.0, 20.0, 30.0], shape=[3, 1]) self.assertProtoEquals(""" dtype: DT_FLOAT tensor_shape { dim { size: 3 } dim { size: 1 } } tensor_content: "\000\000 A\000\000\240A\000\000\360A" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.float32, a.dtype) self.assertAllClose(np.array([[10.0], [20.0], [30.0]], dtype=np.float32), a)
Example #27
Source File: parsing_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testToFloat32(self): with self.test_session(): expected = np.random.rand(3, 4, 5).astype(np.float32) tensor_proto = tensor_util.make_tensor_proto(expected) serialized = tf.placeholder(tf.string) tensor = tf.parse_tensor(serialized, tf.float32) result = tensor.eval( feed_dict={serialized: tensor_proto.SerializeToString()}) self.assertAllEqual(expected, result)
Example #28
Source File: parsing_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testToUint8(self): with self.test_session(): expected = np.random.rand(3, 4, 5).astype(np.uint8) tensor_proto = tensor_util.make_tensor_proto(expected) serialized = tf.placeholder(tf.string) tensor = tf.parse_tensor(serialized, tf.uint8) result = tensor.eval( feed_dict={serialized: tensor_proto.SerializeToString()}) self.assertAllEqual(expected, result)
Example #29
Source File: parsing_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testTypeMismatch(self): with self.test_session(): expected = np.random.rand(3, 4, 5).astype(np.uint8) tensor_proto = tensor_util.make_tensor_proto(expected) serialized = tf.placeholder(tf.string) tensor = tf.parse_tensor(serialized, tf.uint16) with self.assertRaisesOpError( r"Type mismatch between parsed tensor \(uint8\) and dtype " r"\(uint16\)"): tensor.eval(feed_dict={serialized: tensor_proto.SerializeToString()})
Example #30
Source File: optimize_for_inference_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def set_attr_tensor(self, node, key, value, dtype, shape=None): node.attr[key].CopyFrom(tf.AttrValue( tensor=tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape)))