Python keras.layers.pooling.MaxPooling2D() Examples

The following are 30 code examples of keras.layers.pooling.MaxPooling2D(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module keras.layers.pooling , or try the search function .
Example #1
Source File: inception_blocks_v2.py    From Coursera-Ng-Convolutional-Neural-Networks with MIT License 6 votes vote down vote up
def inception_block_3b(X):
    X_3x3 = fr_utils.conv2d_bn(X,
                           layer='inception_5b_3x3',
                           cv1_out=96,
                           cv1_filter=(1, 1),
                           cv2_out=384,
                           cv2_filter=(3, 3),
                           cv2_strides=(1, 1),
                           padding=(1, 1))
    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = fr_utils.conv2d_bn(X_pool,
                           layer='inception_5b_pool',
                           cv1_out=96,
                           cv1_filter=(1, 1))
    X_pool = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_pool)

    X_1x1 = fr_utils.conv2d_bn(X,
                           layer='inception_5b_1x1',
                           cv1_out=256,
                           cv1_filter=(1, 1))
    inception = concatenate([X_3x3, X_pool, X_1x1], axis=1)

    return inception 
Example #2
Source File: se_resnext.py    From TF.Keras-Commonly-used-models with Apache License 2.0 6 votes vote down vote up
def __initial_conv_block_inception(input, weight_decay=5e-4):
    ''' Adds an initial conv block, with batch norm and relu for the inception resnext
    Args:
        input: input tensor
        weight_decay: weight decay factor
    Returns: a keras tensor
    '''
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = Conv2D(64, (7, 7), padding='same', use_bias=False, kernel_initializer='he_normal',
               kernel_regularizer=l2(weight_decay), strides=(2, 2))(input)
    x = BatchNormalization(axis=channel_axis)(x)
    x = LeakyReLU()(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

    return x 
Example #3
Source File: inception_blocks.py    From keras-face with MIT License 6 votes vote down vote up
def inception_block_1c(X):
    X_3x3 = fr_utils.conv2d_bn(X,
                           layer='inception_3c_3x3',
                           cv1_out=128,
                           cv1_filter=(1, 1),
                           cv2_out=256,
                           cv2_filter=(3, 3),
                           cv2_strides=(2, 2),
                           padding=(1, 1))

    X_5x5 = fr_utils.conv2d_bn(X,
                           layer='inception_3c_5x5',
                           cv1_out=32,
                           cv1_filter=(1, 1),
                           cv2_out=64,
                           cv2_filter=(5, 5),
                           cv2_strides=(2, 2),
                           padding=(2, 2))

    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = ZeroPadding2D(padding=((0, 1), (0, 1)), data_format='channels_first')(X_pool)

    inception = concatenate([X_3x3, X_5x5, X_pool], axis=1)

    return inception 
Example #4
Source File: inception_blocks.py    From keras-face with MIT License 6 votes vote down vote up
def inception_block_2b(X):
    #inception4e
    X_3x3 = fr_utils.conv2d_bn(X,
                           layer='inception_4e_3x3',
                           cv1_out=160,
                           cv1_filter=(1, 1),
                           cv2_out=256,
                           cv2_filter=(3, 3),
                           cv2_strides=(2, 2),
                           padding=(1, 1))
    X_5x5 = fr_utils.conv2d_bn(X,
                           layer='inception_4e_5x5',
                           cv1_out=64,
                           cv1_filter=(1, 1),
                           cv2_out=128,
                           cv2_filter=(5, 5),
                           cv2_strides=(2, 2),
                           padding=(2, 2))
    
    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = ZeroPadding2D(padding=((0, 1), (0, 1)), data_format='channels_first')(X_pool)

    inception = concatenate([X_3x3, X_5x5, X_pool], axis=1)

    return inception 
Example #5
Source File: inception_blocks.py    From keras-face with MIT License 6 votes vote down vote up
def inception_block_3b(X):
    X_3x3 = fr_utils.conv2d_bn(X,
                           layer='inception_5b_3x3',
                           cv1_out=96,
                           cv1_filter=(1, 1),
                           cv2_out=384,
                           cv2_filter=(3, 3),
                           cv2_strides=(1, 1),
                           padding=(1, 1))
    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = fr_utils.conv2d_bn(X_pool,
                           layer='inception_5b_pool',
                           cv1_out=96,
                           cv1_filter=(1, 1))
    X_pool = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_pool)

    X_1x1 = fr_utils.conv2d_bn(X,
                           layer='inception_5b_1x1',
                           cv1_out=256,
                           cv1_filter=(1, 1))
    inception = concatenate([X_3x3, X_pool, X_1x1], axis=1)

    return inception 
Example #6
Source File: inception_blocks_v2.py    From Facial-Recognition-using-Facenet with MIT License 6 votes vote down vote up
def inception_block_3b(X):
    X_3x3 = fr_utils.conv2d_bn(X,
                           layer='inception_5b_3x3',
                           cv1_out=96,
                           cv1_filter=(1, 1),
                           cv2_out=384,
                           cv2_filter=(3, 3),
                           cv2_strides=(1, 1),
                           padding=(1, 1))
    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = fr_utils.conv2d_bn(X_pool,
                           layer='inception_5b_pool',
                           cv1_out=96,
                           cv1_filter=(1, 1))
    X_pool = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_pool)

    X_1x1 = fr_utils.conv2d_bn(X,
                           layer='inception_5b_1x1',
                           cv1_out=256,
                           cv1_filter=(1, 1))
    inception = concatenate([X_3x3, X_pool, X_1x1], axis=1)

    return inception 
Example #7
Source File: inception_blocks_v2.py    From Facial-Recognition-using-Facenet with MIT License 6 votes vote down vote up
def inception_block_2b(X):
    #inception4e
    X_3x3 = fr_utils.conv2d_bn(X,
                           layer='inception_4e_3x3',
                           cv1_out=160,
                           cv1_filter=(1, 1),
                           cv2_out=256,
                           cv2_filter=(3, 3),
                           cv2_strides=(2, 2),
                           padding=(1, 1))
    X_5x5 = fr_utils.conv2d_bn(X,
                           layer='inception_4e_5x5',
                           cv1_out=64,
                           cv1_filter=(1, 1),
                           cv2_out=128,
                           cv2_filter=(5, 5),
                           cv2_strides=(2, 2),
                           padding=(2, 2))
    
    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = ZeroPadding2D(padding=((0, 1), (0, 1)), data_format='channels_first')(X_pool)

    inception = concatenate([X_3x3, X_5x5, X_pool], axis=1)

    return inception 
Example #8
Source File: inception_blocks_v2.py    From Facial-Recognition-using-Facenet with MIT License 6 votes vote down vote up
def inception_block_1c(X):
    X_3x3 = fr_utils.conv2d_bn(X,
                           layer='inception_3c_3x3',
                           cv1_out=128,
                           cv1_filter=(1, 1),
                           cv2_out=256,
                           cv2_filter=(3, 3),
                           cv2_strides=(2, 2),
                           padding=(1, 1))

    X_5x5 = fr_utils.conv2d_bn(X,
                           layer='inception_3c_5x5',
                           cv1_out=32,
                           cv1_filter=(1, 1),
                           cv2_out=64,
                           cv2_filter=(5, 5),
                           cv2_strides=(2, 2),
                           padding=(2, 2))

    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = ZeroPadding2D(padding=((0, 1), (0, 1)), data_format='channels_first')(X_pool)

    inception = concatenate([X_3x3, X_5x5, X_pool], axis=1)

    return inception 
Example #9
Source File: inception_blocks_v2.py    From keras-face with MIT License 6 votes vote down vote up
def inception_block_2b(X):
    #inception4e
    X_3x3 = fr_utils.conv2d_bn(X,
                           layer='inception_4e_3x3',
                           cv1_out=160,
                           cv1_filter=(1, 1),
                           cv2_out=256,
                           cv2_filter=(3, 3),
                           cv2_strides=(2, 2),
                           padding=(1, 1))
    X_5x5 = fr_utils.conv2d_bn(X,
                           layer='inception_4e_5x5',
                           cv1_out=64,
                           cv1_filter=(1, 1),
                           cv2_out=128,
                           cv2_filter=(5, 5),
                           cv2_strides=(2, 2),
                           padding=(2, 2))
    
    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = ZeroPadding2D(padding=((0, 1), (0, 1)), data_format='channels_first')(X_pool)

    inception = concatenate([X_3x3, X_5x5, X_pool], axis=1)

    return inception 
Example #10
Source File: inception_blocks_v2.py    From keras-face with MIT License 6 votes vote down vote up
def inception_block_3b(X):
    X_3x3 = fr_utils.conv2d_bn(X,
                           layer='inception_5b_3x3',
                           cv1_out=96,
                           cv1_filter=(1, 1),
                           cv2_out=384,
                           cv2_filter=(3, 3),
                           cv2_strides=(1, 1),
                           padding=(1, 1))
    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = fr_utils.conv2d_bn(X_pool,
                           layer='inception_5b_pool',
                           cv1_out=96,
                           cv1_filter=(1, 1))
    X_pool = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_pool)

    X_1x1 = fr_utils.conv2d_bn(X,
                           layer='inception_5b_1x1',
                           cv1_out=256,
                           cv1_filter=(1, 1))
    inception = concatenate([X_3x3, X_pool, X_1x1], axis=1)

    return inception 
Example #11
Source File: resnext-checkpoint.py    From CBAM-keras with MIT License 6 votes vote down vote up
def __initial_conv_block_inception(input, weight_decay=5e-4):
    ''' Adds an initial conv block, with batch norm and relu for the inception resnext
    Args:
        input: input tensor
        weight_decay: weight decay factor
    Returns: a keras tensor
    '''
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = Conv2D(64, (7, 7), padding='same', use_bias=False, kernel_initializer='he_normal',
               kernel_regularizer=l2(weight_decay), strides=(2, 2))(input)
    x = BatchNormalization(axis=channel_axis)(x)
    x = LeakyReLU()(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

    return x 
Example #12
Source File: resnext.py    From CBAM-keras with MIT License 6 votes vote down vote up
def __initial_conv_block_inception(input, weight_decay=5e-4):
    ''' Adds an initial conv block, with batch norm and relu for the inception resnext
    Args:
        input: input tensor
        weight_decay: weight decay factor
    Returns: a keras tensor
    '''
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = Conv2D(64, (7, 7), padding='same', use_bias=False, kernel_initializer='he_normal',
               kernel_regularizer=l2(weight_decay), strides=(2, 2))(input)
    x = BatchNormalization(axis=channel_axis)(x)
    x = LeakyReLU()(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

    return x 
Example #13
Source File: inception_blocks_v2.py    From Coursera-Ng-Convolutional-Neural-Networks with MIT License 6 votes vote down vote up
def inception_block_1c(X):
    X_3x3 = fr_utils.conv2d_bn(X,
                           layer='inception_3c_3x3',
                           cv1_out=128,
                           cv1_filter=(1, 1),
                           cv2_out=256,
                           cv2_filter=(3, 3),
                           cv2_strides=(2, 2),
                           padding=(1, 1))

    X_5x5 = fr_utils.conv2d_bn(X,
                           layer='inception_3c_5x5',
                           cv1_out=32,
                           cv1_filter=(1, 1),
                           cv2_out=64,
                           cv2_filter=(5, 5),
                           cv2_strides=(2, 2),
                           padding=(2, 2))

    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = ZeroPadding2D(padding=((0, 1), (0, 1)), data_format='channels_first')(X_pool)

    inception = concatenate([X_3x3, X_5x5, X_pool], axis=1)

    return inception 
Example #14
Source File: inception_blocks_v2.py    From Coursera-Ng-Convolutional-Neural-Networks with MIT License 6 votes vote down vote up
def inception_block_2b(X):
    #inception4e
    X_3x3 = fr_utils.conv2d_bn(X,
                           layer='inception_4e_3x3',
                           cv1_out=160,
                           cv1_filter=(1, 1),
                           cv2_out=256,
                           cv2_filter=(3, 3),
                           cv2_strides=(2, 2),
                           padding=(1, 1))
    X_5x5 = fr_utils.conv2d_bn(X,
                           layer='inception_4e_5x5',
                           cv1_out=64,
                           cv1_filter=(1, 1),
                           cv2_out=128,
                           cv2_filter=(5, 5),
                           cv2_strides=(2, 2),
                           padding=(2, 2))
    
    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = ZeroPadding2D(padding=((0, 1), (0, 1)), data_format='channels_first')(X_pool)

    inception = concatenate([X_3x3, X_5x5, X_pool], axis=1)

    return inception 
Example #15
Source File: read_keypoint.py    From poseGuidedImgGeneration with MIT License 5 votes vote down vote up
def pooling(x, ks, st, name):
    x = MaxPooling2D((ks, ks), strides=(st, st), name=name)(x)
    return x 
Example #16
Source File: inception_blocks_v2.py    From keras-face with MIT License 5 votes vote down vote up
def inception_block_1a(X):
    """
    Implementation of an inception block
    """
    
    X_3x3 = Conv2D(96, (1, 1), data_format='channels_first', name ='inception_3a_3x3_conv1')(X)
    X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name = 'inception_3a_3x3_bn1')(X_3x3)
    X_3x3 = Activation('relu')(X_3x3)
    X_3x3 = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_3x3)
    X_3x3 = Conv2D(128, (3, 3), data_format='channels_first', name='inception_3a_3x3_conv2')(X_3x3)
    X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_3x3_bn2')(X_3x3)
    X_3x3 = Activation('relu')(X_3x3)
    
    X_5x5 = Conv2D(16, (1, 1), data_format='channels_first', name='inception_3a_5x5_conv1')(X)
    X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_5x5_bn1')(X_5x5)
    X_5x5 = Activation('relu')(X_5x5)
    X_5x5 = ZeroPadding2D(padding=(2, 2), data_format='channels_first')(X_5x5)
    X_5x5 = Conv2D(32, (5, 5), data_format='channels_first', name='inception_3a_5x5_conv2')(X_5x5)
    X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_5x5_bn2')(X_5x5)
    X_5x5 = Activation('relu')(X_5x5)

    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = Conv2D(32, (1, 1), data_format='channels_first', name='inception_3a_pool_conv')(X_pool)
    X_pool = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_pool_bn')(X_pool)
    X_pool = Activation('relu')(X_pool)
    X_pool = ZeroPadding2D(padding=((3, 4), (3, 4)), data_format='channels_first')(X_pool)

    X_1x1 = Conv2D(64, (1, 1), data_format='channels_first', name='inception_3a_1x1_conv')(X)
    X_1x1 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_1x1_bn')(X_1x1)
    X_1x1 = Activation('relu')(X_1x1)
        
    # CONCAT
    inception = concatenate([X_3x3, X_5x5, X_pool, X_1x1], axis=1)

    return inception 
Example #17
Source File: inception_blocks_v2.py    From Coursera-Ng-Convolutional-Neural-Networks with MIT License 5 votes vote down vote up
def inception_block_1a(X):
    """
    Implementation of an inception block
    """
    
    X_3x3 = Conv2D(96, (1, 1), data_format='channels_first', name ='inception_3a_3x3_conv1')(X)
    X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name = 'inception_3a_3x3_bn1')(X_3x3)
    X_3x3 = Activation('relu')(X_3x3)
    X_3x3 = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_3x3)
    X_3x3 = Conv2D(128, (3, 3), data_format='channels_first', name='inception_3a_3x3_conv2')(X_3x3)
    X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_3x3_bn2')(X_3x3)
    X_3x3 = Activation('relu')(X_3x3)
    
    X_5x5 = Conv2D(16, (1, 1), data_format='channels_first', name='inception_3a_5x5_conv1')(X)
    X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_5x5_bn1')(X_5x5)
    X_5x5 = Activation('relu')(X_5x5)
    X_5x5 = ZeroPadding2D(padding=(2, 2), data_format='channels_first')(X_5x5)
    X_5x5 = Conv2D(32, (5, 5), data_format='channels_first', name='inception_3a_5x5_conv2')(X_5x5)
    X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_5x5_bn2')(X_5x5)
    X_5x5 = Activation('relu')(X_5x5)

    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = Conv2D(32, (1, 1), data_format='channels_first', name='inception_3a_pool_conv')(X_pool)
    X_pool = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_pool_bn')(X_pool)
    X_pool = Activation('relu')(X_pool)
    X_pool = ZeroPadding2D(padding=((3, 4), (3, 4)), data_format='channels_first')(X_pool)

    X_1x1 = Conv2D(64, (1, 1), data_format='channels_first', name='inception_3a_1x1_conv')(X)
    X_1x1 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_1x1_bn')(X_1x1)
    X_1x1 = Activation('relu')(X_1x1)
        
    # CONCAT
    inception = concatenate([X_3x3, X_5x5, X_pool, X_1x1], axis=1)

    return inception 
Example #18
Source File: inception_blocks.py    From keras-face with MIT License 5 votes vote down vote up
def inception_block_1a(X):
    """
    Implementation of an inception block
    """
    
    X_3x3 = Conv2D(96, (1, 1), data_format='channels_first', name ='inception_3a_3x3_conv1')(X)
    X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name = 'inception_3a_3x3_bn1')(X_3x3)
    X_3x3 = Activation('relu')(X_3x3)
    X_3x3 = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_3x3)
    X_3x3 = Conv2D(128, (3, 3), data_format='channels_first', name='inception_3a_3x3_conv2')(X_3x3)
    X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_3x3_bn2')(X_3x3)
    X_3x3 = Activation('relu')(X_3x3)
    
    X_5x5 = Conv2D(16, (1, 1), data_format='channels_first', name='inception_3a_5x5_conv1')(X)
    X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_5x5_bn1')(X_5x5)
    X_5x5 = Activation('relu')(X_5x5)
    X_5x5 = ZeroPadding2D(padding=(2, 2), data_format='channels_first')(X_5x5)
    X_5x5 = Conv2D(32, (5, 5), data_format='channels_first', name='inception_3a_5x5_conv2')(X_5x5)
    X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_5x5_bn2')(X_5x5)
    X_5x5 = Activation('relu')(X_5x5)

    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = Conv2D(32, (1, 1), data_format='channels_first', name='inception_3a_pool_conv')(X_pool)
    X_pool = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_pool_bn')(X_pool)
    X_pool = Activation('relu')(X_pool)
    X_pool = ZeroPadding2D(padding=((3, 4), (3, 4)), data_format='channels_first')(X_pool)

    X_1x1 = Conv2D(64, (1, 1), data_format='channels_first', name='inception_3a_1x1_conv')(X)
    X_1x1 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_1x1_bn')(X_1x1)
    X_1x1 = Activation('relu')(X_1x1)
        
    # CONCAT
    inception = concatenate([X_3x3, X_5x5, X_pool, X_1x1], axis=1)

    return inception 
Example #19
Source File: topcoder_crnn.py    From crnn-lid with GNU General Public License v3.0 5 votes vote down vote up
def create_model(input_shape, config, is_training=True):

    weight_decay = 0.001

    model = Sequential()

    model.add(Convolution2D(16, 7, 7, W_regularizer=l2(weight_decay), activation="relu", input_shape=input_shape))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(32, 5, 5, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(64, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(128, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(256, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    # (bs, y, x, c) --> (bs, x, y, c)
    model.add(Permute((2, 1, 3)))

    # (bs, x, y, c) --> (bs, x, y * c)
    bs, x, y, c = model.layers[-1].output_shape
    model.add(Reshape((x, y*c)))

    model.add(Bidirectional(LSTM(512, return_sequences=False), merge_mode="concat"))
    model.add(Dense(config["num_classes"], activation="softmax"))

    return model 
Example #20
Source File: densenet.py    From DIIN-in-Keras with MIT License 5 votes vote down vote up
def __transition_block(self, x, nb_filter, compression, apply_batch_norm):
        if apply_batch_norm:
            x = BatchNormalization(axis=self.concat_axis, epsilon=1.1e-5)(x)
        x = Conv2D(int(nb_filter * compression), (1, 1), padding='same', activation=None)(x)
        x = MaxPooling2D(strides=(2, 2))(x)
        return x 
Example #21
Source File: models.py    From DeepLearningImplementations with MIT License 5 votes vote down vote up
def standard_conv_block(x, nb_filter, strides=(1,1), pooling=False, bn=False, dropout_rate=None, weight_decay=0):
    x = Conv2D(nb_filter, (3, 3),
               strides=strides,
               padding="same",
               kernel_regularizer=l2(weight_decay))(x)
    if bn:
        x = BatchNormalization(mode=2, axis=1)(x)
    x = Activation("relu")(x)
    if pooling:
        x = MaxPooling2D()(x)
    if dropout_rate:
        x = Dropout(dropout_rate)(x)
    return x 
Example #22
Source File: encoder.py    From enet-keras with MIT License 5 votes vote down vote up
def initial_block(inp, nb_filter=13, nb_row=3, nb_col=3, strides=(2, 2)):
    conv = Conv2D(nb_filter, (nb_row, nb_col), padding='same', strides=strides)(inp)
    max_pool = MaxPooling2D()(inp)
    merged = concatenate([conv, max_pool], axis=3)
    return merged 
Example #23
Source File: MaskRCNN.py    From PyTorch-Luna16 with Apache License 2.0 5 votes vote down vote up
def resnet_graph(input_image, architecture, stage5=False):
    assert architecture in ["resnet50", "resnet101"]
    # Stage 1
    x = ZeroPadding2D((3, 3))(input_image)
    x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x)
    x = BatchNorm(axis=3, name='bn_conv1')(x)
    x = Activation('relu')(x)
    C1 = x = MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x)
    # Stage 2
    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
    # Stage 3
    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
    # Stage 4
    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    block_count = {"resnet50": 5, "resnet101": 22}[architecture]
    for i in range(block_count):
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i))
    C4 = x
    # Stage 5
    if stage5:
        x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
        x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
        C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
    else:
        C5 = None
    return [C1, C2, C3, C4, C5]


############################################################
#  Proposal Layer
############################################################ 
Example #24
Source File: network_agent.py    From Multi-Commander with Apache License 2.0 5 votes vote down vote up
def conv2d_bn(input_layer, index_layer,
              filters=16,
              kernel_size=(3, 3),
              strides=(1, 1)):
    """Utility function to apply conv + BN.
    # Arguments
        x: input tensor.
        filters: filters in `Conv2D`.
        num_row: height of the convolution kernel.
        num_col: width of the convolution kernel.
        padding: padding mode in `Conv2D`.
        strides: strides in `Conv2D`.
        name: name of the ops; will become `name + '_conv'`
            for the convolution and `name + '_bn'` for the
            batch norm layer.
    # Returns
        Output tensor after applying `Conv2D` and `BatchNormalization`.
    """
    if K.image_data_format() == 'channels_first':
        bn_axis = 1
    else:
        bn_axis = 3
    conv = Conv2D(filters=filters,
                  kernel_size=kernel_size,
                  strides=strides,
                  padding='same',
                  use_bias=False,
                  name="conv{0}".format(index_layer))(input_layer)
    bn = BatchNormalization(axis=bn_axis, scale=False, name="bn{0}".format(index_layer))(conv)
    act = Activation('relu', name="act{0}".format(index_layer))(bn)
    pooling = MaxPooling2D(pool_size=2)(act)
    x = Dropout(0.3)(pooling)
    return x 
Example #25
Source File: models.py    From kaggle-carvana-2017 with MIT License 5 votes vote down vote up
def get_simple_unet(input_shape):
    img_input = Input(input_shape)
    conv1 = conv_block_simple(img_input, 32, "conv1_1")
    conv1 = conv_block_simple(conv1, 32, "conv1_2")
    pool1 = MaxPooling2D((2, 2), strides=(2, 2), padding="same", name="pool1")(conv1)

    conv2 = conv_block_simple(pool1, 64, "conv2_1")
    conv2 = conv_block_simple(conv2, 64, "conv2_2")
    pool2 = MaxPooling2D((2, 2), strides=(2, 2), padding="same", name="pool2")(conv2)

    conv3 = conv_block_simple(pool2, 128, "conv3_1")
    conv3 = conv_block_simple(conv3, 128, "conv3_2")
    pool3 = MaxPooling2D((2, 2), strides=(2, 2), padding="same", name="pool3")(conv3)

    conv4 = conv_block_simple(pool3, 256, "conv4_1")
    conv4 = conv_block_simple(conv4, 256, "conv4_2")
    conv4 = conv_block_simple(conv4, 256, "conv4_3")

    up5 = concatenate([UpSampling2D()(conv4), conv3], axis=-1)
    conv5 = conv_block_simple(up5, 128, "conv5_1")
    conv5 = conv_block_simple(conv5, 128, "conv5_2")

    up6 = concatenate([UpSampling2D()(conv5), conv2], axis=-1)
    conv6 = conv_block_simple(up6, 64, "conv6_1")
    conv6 = conv_block_simple(conv6, 64, "conv6_2")

    up7 = concatenate([UpSampling2D()(conv6), conv1], axis=-1)
    conv7 = conv_block_simple(up7, 32, "conv7_1")
    conv7 = conv_block_simple(conv7, 32, "conv7_2")

    conv7 = SpatialDropout2D(0.2)(conv7)

    prediction = Conv2D(1, (1, 1), activation="sigmoid", name="prediction")(conv7)
    model = Model(img_input, prediction)
    return model 
Example #26
Source File: cnn.py    From crnn-lid with GNU General Public License v3.0 5 votes vote down vote up
def create_model(input_shape, config, is_training=True):

    weight_decay = 0.001

    model = Sequential()

    model.add(Convolution2D(64, 3, 3, W_regularizer=l2(weight_decay), activation="relu", input_shape=input_shape))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(128, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(256, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    # model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(256, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(512, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    # model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(512, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(512, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Flatten())
    model.add(Dense(1024, W_regularizer=l2(weight_decay), activation="relu"))

    model.add(Dense(config["num_classes"], activation="softmax"))

    return model 
Example #27
Source File: topcoder.py    From crnn-lid with GNU General Public License v3.0 5 votes vote down vote up
def create_model(input_shape, config, is_training=True):

    weight_decay = 0.001

    model = Sequential()

    model.add(Convolution2D(16, 7, 7, W_regularizer=l2(weight_decay), activation="relu", input_shape=input_shape))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(32, 5, 5, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(64, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(128, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(256, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Dropout(0.5))

    model.add(Flatten())
    model.add(Dense(1024, W_regularizer=l2(weight_decay), activation="relu"))

    model.add(Dense(config["num_classes"], activation="softmax"))

    return model 
Example #28
Source File: topcoder_finetune.py    From crnn-lid with GNU General Public License v3.0 5 votes vote down vote up
def create_model(input_shape, config, is_training=True):

    weight_decay = 0.001

    model = Sequential()

    model.add(Convolution2D(16, 7, 7, W_regularizer=l2(weight_decay), activation="relu", input_shape=input_shape))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(32, 5, 5, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(64, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(128, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(256, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Dropout(0.5))
    model.add(Flatten())

    # Restore layer weights
    model.load_weights("logs/2016-12-16-15-58-20/weights.131.model", by_name=True)

    # Retrain last two layers from scratch
    model.add(Dense(1024, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(Dense(config["num_classes"], activation="softmax"))

    return model 
Example #29
Source File: topcoder_deeper.py    From crnn-lid with GNU General Public License v3.0 5 votes vote down vote up
def create_model(input_shape, config, is_training=True):

    weight_decay = 0.001

    model = Sequential()

    model.add(Convolution2D(32, 7, 7, W_regularizer=l2(weight_decay), activation="relu", input_shape=input_shape))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(64, 5, 5, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(128, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(256, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(512, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Dropout(0.5))

    model.add(Flatten())
    model.add(Dense(1024, W_regularizer=l2(weight_decay), activation="relu"))

    model.add(Dense(config["num_classes"], activation="softmax"))

    return model 
Example #30
Source File: run.py    From Generative-Adversarial-Networks-Projects with MIT License 5 votes vote down vote up
def build_discriminator():
    dis_model = Sequential()
    dis_model.add(
        Conv2D(128, (5, 5),
               padding='same',
               input_shape=(64, 64, 3))
    )
    dis_model.add(LeakyReLU(alpha=0.2))
    dis_model.add(MaxPooling2D(pool_size=(2, 2)))

    dis_model.add(Conv2D(256, (3, 3)))
    dis_model.add(LeakyReLU(alpha=0.2))
    dis_model.add(MaxPooling2D(pool_size=(2, 2)))

    dis_model.add(Conv2D(512, (3, 3)))
    dis_model.add(LeakyReLU(alpha=0.2))
    dis_model.add(MaxPooling2D(pool_size=(2, 2)))

    dis_model.add(Flatten())
    dis_model.add(Dense(1024))
    dis_model.add(LeakyReLU(alpha=0.2))

    dis_model.add(Dense(1))
    dis_model.add(Activation('sigmoid'))

    return dis_model