Python keras.layers.pooling.GlobalMaxPooling1D() Examples
The following are 9
code examples of keras.layers.pooling.GlobalMaxPooling1D().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.layers.pooling
, or try the search function
.
Example #1
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_globalpooling_1d(): layer_test(pooling.GlobalMaxPooling1D, input_shape=(3, 4, 5)) layer_test(pooling.GlobalAveragePooling1D, input_shape=(3, 4, 5))
Example #2
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_globalpooling_1d(): layer_test(pooling.GlobalMaxPooling1D, input_shape=(3, 4, 5)) layer_test(pooling.GlobalAveragePooling1D, input_shape=(3, 4, 5))
Example #3
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_globalpooling_1d(): layer_test(pooling.GlobalMaxPooling1D, input_shape=(3, 4, 5)) layer_test(pooling.GlobalAveragePooling1D, input_shape=(3, 4, 5))
Example #4
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_globalpooling_1d(): layer_test(pooling.GlobalMaxPooling1D, input_shape=(3, 4, 5)) layer_test(pooling.GlobalAveragePooling1D, input_shape=(3, 4, 5))
Example #5
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_globalpooling_1d(): layer_test(pooling.GlobalMaxPooling1D, input_shape=(3, 4, 5)) layer_test(pooling.GlobalAveragePooling1D, input_shape=(3, 4, 5))
Example #6
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_globalpooling_1d(): layer_test(pooling.GlobalMaxPooling1D, input_shape=(3, 4, 5)) layer_test(pooling.GlobalAveragePooling1D, input_shape=(3, 4, 5))
Example #7
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_globalpooling_1d(): layer_test(pooling.GlobalMaxPooling1D, input_shape=(3, 4, 5)) layer_test(pooling.GlobalAveragePooling1D, input_shape=(3, 4, 5))
Example #8
Source File: multiclass.py From intent_classifier with Apache License 2.0 | 5 votes |
def cnn_model(self, params): """ Method builds uncompiled intent_model of shallow-and-wide CNN Args: params: disctionary of parameters for NN Returns: Uncompiled intent_model """ if type(self.opt['kernel_sizes_cnn']) is str: self.opt['kernel_sizes_cnn'] = [int(x) for x in self.opt['kernel_sizes_cnn'].split(' ')] inp = Input(shape=(params['text_size'], params['embedding_size'])) outputs = [] for i in range(len(params['kernel_sizes_cnn'])): output_i = Conv1D(params['filters_cnn'], kernel_size=params['kernel_sizes_cnn'][i], activation=None, kernel_regularizer=l2(params['coef_reg_cnn']), padding='same')(inp) output_i = BatchNormalization()(output_i) output_i = Activation('relu')(output_i) output_i = GlobalMaxPooling1D()(output_i) outputs.append(output_i) output = concatenate(outputs, axis=1) output = Dropout(rate=params['dropout_rate'])(output) output = Dense(params['dense_size'], activation=None, kernel_regularizer=l2(params['coef_reg_den']))(output) output = BatchNormalization()(output) output = Activation('relu')(output) output = Dropout(rate=params['dropout_rate'])(output) output = Dense(self.n_classes, activation=None, kernel_regularizer=l2(params['coef_reg_den']))(output) output = BatchNormalization()(output) act_output = Activation('sigmoid')(output) model = Model(inputs=inp, outputs=act_output) return model
Example #9
Source File: multiclass.py From intent_classifier with Apache License 2.0 | 4 votes |
def dcnn_model(self, params): """ Method builds uncompiled intent_model of deep CNN Args: params: disctionary of parameters for NN Returns: Uncompiled intent_model """ if type(self.opt['kernel_sizes_cnn']) is str: self.opt['kernel_sizes_cnn'] = [int(x) for x in self.opt['kernel_sizes_cnn'].split(' ')] if type(self.opt['filters_cnn']) is str: self.opt['filters_cnn'] = [int(x) for x in self.opt['filters_cnn'].split(' ')] inp = Input(shape=(params['text_size'], params['embedding_size'])) output = inp for i in range(len(params['kernel_sizes_cnn'])): output = Conv1D(params['filters_cnn'][i], kernel_size=params['kernel_sizes_cnn'][i], activation=None, kernel_regularizer=l2(params['coef_reg_cnn']), padding='same')(output) output = BatchNormalization()(output) output = Activation('relu')(output) output = MaxPooling1D()(output) output = GlobalMaxPooling1D()(output) output = Dropout(rate=params['dropout_rate'])(output) output = Dense(params['dense_size'], activation=None, kernel_regularizer=l2(params['coef_reg_den']))(output) output = BatchNormalization()(output) output = Activation('relu')(output) output = Dropout(rate=params['dropout_rate'])(output) output = Dense(self.n_classes, activation=None, kernel_regularizer=l2(params['coef_reg_den']))(output) output = BatchNormalization()(output) act_output = Activation('sigmoid')(output) model = Model(inputs=inp, outputs=act_output) return model