akka.kafka.scaladsl.Consumer Scala Examples
The following examples show how to use akka.kafka.scaladsl.Consumer.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: IntegrationTest.scala From kmq with Apache License 2.0 | 6 votes |
package com.softwaremill.kmq.redelivery import java.time.Duration import java.util.Random import akka.actor.ActorSystem import akka.kafka.scaladsl.{Consumer, Producer} import akka.kafka.{ConsumerSettings, ProducerMessage, ProducerSettings, Subscriptions} import akka.stream.ActorMaterializer import akka.testkit.TestKit import com.softwaremill.kmq._ import com.softwaremill.kmq.redelivery.infrastructure.KafkaSpec import org.apache.kafka.clients.consumer.ConsumerConfig import org.apache.kafka.clients.producer.{ProducerConfig, ProducerRecord} import org.apache.kafka.common.serialization.StringDeserializer import org.scalatest.concurrent.Eventually import org.scalatest.time.{Seconds, Span} import org.scalatest.{BeforeAndAfterAll, FlatSpecLike, Matchers} import scala.collection.mutable.ArrayBuffer class IntegrationTest extends TestKit(ActorSystem("test-system")) with FlatSpecLike with KafkaSpec with BeforeAndAfterAll with Eventually with Matchers { implicit val materializer = ActorMaterializer() import system.dispatcher "KMQ" should "resend message if not committed" in { val bootstrapServer = s"localhost:${testKafkaConfig.kafkaPort}" val kmqConfig = new KmqConfig("queue", "markers", "kmq_client", "kmq_redelivery", Duration.ofSeconds(1).toMillis, 1000) val consumerSettings = ConsumerSettings(system, new StringDeserializer, new StringDeserializer) .withBootstrapServers(bootstrapServer) .withGroupId(kmqConfig.getMsgConsumerGroupId) .withProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest") val markerProducerSettings = ProducerSettings(system, new MarkerKey.MarkerKeySerializer(), new MarkerValue.MarkerValueSerializer()) .withBootstrapServers(bootstrapServer) .withProperty(ProducerConfig.PARTITIONER_CLASS_CONFIG, classOf[ParititionFromMarkerKey].getName) val markerProducer = markerProducerSettings.createKafkaProducer() val random = new Random() lazy val processedMessages = ArrayBuffer[String]() lazy val receivedMessages = ArrayBuffer[String]() val control = Consumer.committableSource(consumerSettings, Subscriptions.topics(kmqConfig.getMsgTopic)) // 1. get messages from topic .map { msg => ProducerMessage.Message( new ProducerRecord[MarkerKey, MarkerValue](kmqConfig.getMarkerTopic, MarkerKey.fromRecord(msg.record), new StartMarker(kmqConfig.getMsgTimeoutMs)), msg) } .via(Producer.flow(markerProducerSettings, markerProducer)) // 2. write the "start" marker .map(_.message.passThrough) .mapAsync(1) { msg => msg.committableOffset.commitScaladsl().map(_ => msg.record) // this should be batched } .map { msg => receivedMessages += msg.value msg } .filter(_ => random.nextInt(5) != 0) .map { processedMessage => processedMessages += processedMessage.value new ProducerRecord[MarkerKey, MarkerValue](kmqConfig.getMarkerTopic, MarkerKey.fromRecord(processedMessage), EndMarker.INSTANCE) } .to(Producer.plainSink(markerProducerSettings, markerProducer)) // 5. write "end" markers .run() val redeliveryHook = RedeliveryTracker.start(new KafkaClients(bootstrapServer), kmqConfig) val messages = (0 to 20).map(_.toString) messages.foreach(msg => sendToKafka(kmqConfig.getMsgTopic,msg)) eventually { receivedMessages.size should be > processedMessages.size processedMessages.sortBy(_.toInt).distinct shouldBe messages }(PatienceConfig(timeout = Span(15, Seconds)), implicitly) redeliveryHook.close() control.shutdown() } override def afterAll(): Unit = { super.afterAll() TestKit.shutdownActorSystem(system) } }
Example 2
Source File: WordCountConsumer.scala From akka_streams_tutorial with MIT License | 5 votes |
package alpakka.kafka import akka.Done import akka.actor.{ActorSystem, Props} import akka.kafka.scaladsl.Consumer.DrainingControl import akka.kafka.scaladsl.{Committer, Consumer} import akka.kafka.{CommitterSettings, ConsumerSettings, Subscriptions} import akka.stream.scaladsl.Sink import akka.util.Timeout import alpakka.kafka.TotalFake.{IncrementMessage, IncrementWord} import org.apache.kafka.clients.consumer.ConsumerConfig import org.apache.kafka.common.serialization.{LongDeserializer, StringDeserializer} import scala.concurrent.Future import scala.concurrent.duration._ object WordCountConsumer extends App { implicit val system = ActorSystem("WordCountConsumer") implicit val ec = system.dispatcher val total = system.actorOf(Props[TotalFake], "totalFake") val committerSettings = CommitterSettings(system).withMaxBatch(1) def createConsumerSettings(group: String): ConsumerSettings[String, java.lang.Long] = { ConsumerSettings(system, new StringDeserializer , new LongDeserializer) .withBootstrapServers("localhost:9092") .withGroupId(group) //Define consumer behavior upon starting to read a partition for which it does not have a committed offset or if the committed offset it has is invalid .withProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest") } def createAndRunConsumerWordCount(id: String) = { Consumer.committableSource(createConsumerSettings("wordcount consumer group"), Subscriptions.topics("wordcount-output")) .mapAsync(1) { msg => //println(s"$id - Offset: ${msg.record.offset()} - Partition: ${msg.record.partition()} Consume msg with key: ${msg.record.key()} and value: ${msg.record.value()}") if (msg.record.key().equalsIgnoreCase("fakeNews")) { //hardcoded because WordCountProducer.fakeNewsKeyword does not work import akka.pattern.ask implicit val askTimeout: Timeout = Timeout(3.seconds) (total ? IncrementWord(msg.record.value.toInt, id)) .mapTo[Done] .map(_ => msg.committableOffset) } else { Future(msg).map(_ => msg.committableOffset) } } .via(Committer.flow(committerSettings)) .toMat(Sink.seq)(DrainingControl.apply) .run() } def createAndRunConsumerMessageCount(id: String) = { Consumer.committableSource(createConsumerSettings("messagecount consumer group"), Subscriptions.topics("messagecount-output")) .mapAsync(1) { msg => //println(s"$id - Offset: ${msg.record.offset()} - Partition: ${msg.record.partition()} Consume msg with key: ${msg.record.key()} and value: ${msg.record.value()}") import akka.pattern.ask implicit val askTimeout: Timeout = Timeout(3.seconds) (total ? IncrementMessage(msg.record.value.toInt, id)) .mapTo[Done] .map(_ => msg.committableOffset) } .via(Committer.flow(committerSettings)) .toMat(Sink.seq)(DrainingControl.apply) .run() } val drainingControlW1 = createAndRunConsumerWordCount("W.1") val drainingControlW2 = createAndRunConsumerWordCount("W.2") val drainingControlM = createAndRunConsumerMessageCount("M") sys.addShutdownHook{ println("Got control-c cmd from shell, about to shutdown...") drainingControlW1.drainAndShutdown() drainingControlW2.drainAndShutdown() drainingControlM.drainAndShutdown() } }
Example 3
Source File: TopicsEndpoint.scala From hydra with Apache License 2.0 | 5 votes |
package hydra.kafka.endpoints import akka.actor.ActorSelection import akka.http.scaladsl.common.EntityStreamingSupport import akka.kafka.Subscriptions import akka.kafka.scaladsl.Consumer import akka.pattern.ask import akka.util.Timeout import hydra.core.http.RouteSupport import hydra.kafka.consumer.KafkaConsumerProxy.{GetLatestOffsets, LatestOffsetsResponse} import org.apache.kafka.clients.consumer.ConsumerRecord import org.apache.kafka.common.TopicPartition import scala.collection.immutable.Map import scala.concurrent.duration._ import scala.concurrent.{Await, ExecutionContext, Future} class TopicsEndpoint(consumerProxy:ActorSelection)(implicit ec:ExecutionContext) extends RouteSupport { import hydra.kafka.util.KafkaUtils._ implicit val jsonStreamingSupport = EntityStreamingSupport.json() override val route = path("transports" / "kafka" / "consumer" / "topics" / Segment) { topicName => get { extractRequestContext { ctx => parameters('format.?, 'group.?, 'n ? 10, 'start ? "earliest") { (format, groupId, n, startOffset) => val settings = loadConsumerSettings[Any, Any]( format.getOrElse("avro"), groupId.getOrElse("hydra"), startOffset ) val offsets = latestOffsets(topicName) val source = Consumer .plainSource(settings, Subscriptions.topics(topicName)) .initialTimeout(5.seconds) .zipWithIndex .takeWhile(rec => rec._2 <= n && !shouldCancel(offsets, rec._1) ) .map(rec => rec._1.value().toString) .watchTermination()((_, termination) => termination.failed.foreach { case cause => ctx.fail(cause) } ) complete(source) } } } } def shouldCancel( fpartitions: Future[Map[TopicPartition, Long]], record: ConsumerRecord[Any, Any] ): Boolean = { if (fpartitions.isCompleted) { val partitions = Await.result(fpartitions, 1.millis) val tp = new TopicPartition(record.topic(), record.partition()) partitions.get(tp) match { case Some(offset) => record.offset() >= offset case None => false } } else { false } } private def latestOffsets( topic: String ): Future[Map[TopicPartition, Long]] = { implicit val timeout = Timeout(5 seconds) (consumerProxy ? GetLatestOffsets(topic)) .mapTo[LatestOffsetsResponse] .map(_.offsets) } }
Example 4
Source File: WebSocket.scala From trucking-iot with Apache License 2.0 | 5 votes |
package controllers import javax.inject.{Inject, Singleton} import akka.actor.{Actor, ActorRef, ActorSystem, Props} import akka.kafka.scaladsl.Consumer import akka.kafka.{ConsumerSettings, Subscriptions} import akka.stream.scaladsl.Sink import akka.stream.{Materializer, ThrottleMode} import com.typesafe.config.ConfigFactory import org.apache.kafka.clients.consumer.ConsumerConfig import org.apache.kafka.common.serialization.{ByteArrayDeserializer, StringDeserializer} import play.api.libs.streams.ActorFlow import play.api.mvc.{Controller, WebSocket} import scala.concurrent.ExecutionContext.Implicits.global import scala.concurrent.Future import scala.concurrent.duration._ //@Singleton class KafkaWebSocket @Inject() (implicit system: ActorSystem, materializer: Materializer) extends Controller { def kafkaWS = WebSocket.accept[String, String] { request => ActorFlow.actorRef(out => KafkaWSActor.props(out)) } object KafkaWSActor { def props(outRef: ActorRef) = Props(new KafkaWSActor(outRef)) } class KafkaWSActor(outRef: ActorRef) extends Actor { val config = ConfigFactory.load() val combinedConfig = ConfigFactory.defaultOverrides() .withFallback(config) .withFallback(ConfigFactory.defaultApplication()) .getConfig("trucking-web-application.backend") val consumerSettings = ConsumerSettings(system, new ByteArrayDeserializer, new StringDeserializer) //.withBootstrapServers("sandbox-hdf.hortonworks.com:6667") .withBootstrapServers(combinedConfig.getString("kafka.bootstrap-servers")) .withGroupId("group1") .withProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest") Consumer.committableSource(consumerSettings, Subscriptions.topics("trucking_data_joined")) .mapAsync(1) { msg => Future(outRef ! msg.record.value).map(_ => msg) } //.mapAsync(1) { msg => msg.committableOffset.commitScaladsl() } // TODO: Disabling commits for debug .throttle(1, 250.milliseconds, 1, ThrottleMode.Shaping) .runWith(Sink.ignore) def receive = { case msg: String => outRef ! s"Ack: $msg" } } }
Example 5
Source File: ConsumerStream.scala From reactive-kafka-microservice-template with Apache License 2.0 | 5 votes |
package com.omearac.consumers import akka.actor.{ActorRef, ActorSystem} import akka.kafka.ConsumerMessage.CommittableOffsetBatch import akka.kafka.scaladsl.Consumer import akka.kafka.{ConsumerMessage, ConsumerSettings, Subscriptions} import akka.stream.scaladsl.{Flow, Sink} import com.omearac.shared.EventMessages.FailedMessageConversion import com.omearac.shared.JsonMessageConversion.Conversion import com.omearac.shared.{AkkaStreams, EventSourcing} import org.apache.kafka.clients.consumer.ConsumerConfig import org.apache.kafka.common.serialization.{ByteArrayDeserializer, StringDeserializer} import scala.collection.mutable.ArrayBuffer import scala.concurrent.Future trait ConsumerStream extends AkkaStreams with EventSourcing { implicit val system: ActorSystem def self: ActorRef def createStreamSink(consumerActorSink : ActorRef) = { Sink.actorRefWithAck(consumerActorSink, "STREAM_INIT", "OK", "STREAM_DONE") } def createStreamSource(consumerProperties: Map[String,String]) = { val kafkaMBAddress = consumerProperties("bootstrap-servers") val groupID = consumerProperties("groupId") val topicSubscription = consumerProperties("subscription-topic") val consumerSettings = ConsumerSettings(system, new ByteArrayDeserializer, new StringDeserializer) .withBootstrapServers(kafkaMBAddress) .withGroupId(groupID) .withProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest") Consumer.committableSource(consumerSettings, Subscriptions.topics(topicSubscription)) } def createStreamFlow[msgType: Conversion] = { Flow[ConsumerMessage.CommittableMessage[Array[Byte], String]] .map(msg => (msg.committableOffset, Conversion[msgType].convertFromJson(msg.record.value))) //Publish the conversion error event messages returned from the JSONConversion .map (tuple => publishConversionErrors[msgType](tuple)) .filter(result => result.isRight) .map(test => test.right.get) //Group the commit offsets and correctly converted messages for more efficient Kafka commits .batch(max = 20, tuple => (CommittableOffsetBatch.empty.updated(tuple._1), ArrayBuffer[msgType](tuple._2))) {(tupleOfCommitOffsetAndMsgs, tuple) => (tupleOfCommitOffsetAndMsgs._1.updated(tuple._1), tupleOfCommitOffsetAndMsgs._2 :+ tuple._2) } //Take the first element of the tuple (set of commit numbers) to add to kafka commit log and then return the collection of grouped case class messages .mapAsync(4)(tupleOfCommitOffsetAndMsgs => commitOffsetsToKafka[msgType](tupleOfCommitOffsetAndMsgs)) .map(msgGroup => msgGroup._2) } def commitOffsetsToKafka[msgType](tupleOfCommitOffsetAndMsgs: (ConsumerMessage.CommittableOffsetBatch, ArrayBuffer[msgType])) = Future { (tupleOfCommitOffsetAndMsgs._1.commitScaladsl(), tupleOfCommitOffsetAndMsgs._2) } def publishConversionErrors[msgType](tupleOfCommitOffsetAndConversionResults: (ConsumerMessage.CommittableOffset, Either[FailedMessageConversion,msgType])) : Either[Unit,(ConsumerMessage.CommittableOffset,msgType)] = { if (tupleOfCommitOffsetAndConversionResults._2.isLeft) { //Publish a local event that there was a failure in conversion publishLocalEvent(tupleOfCommitOffsetAndConversionResults._2.left.get) //Commit the Kafka Offset to acknowledge that the message was consumed Left(tupleOfCommitOffsetAndConversionResults._1.commitScaladsl()) } else Right(tupleOfCommitOffsetAndConversionResults._1,tupleOfCommitOffsetAndConversionResults._2.right.get) } }
Example 6
Source File: ProcessingKafkaApplication.scala From Akka-Cookbook with MIT License | 5 votes |
package com.packt.chapter8 import akka.actor.ActorSystem import akka.kafka.scaladsl.{Consumer, Producer} import akka.kafka.{ConsumerSettings, ProducerSettings, Subscriptions} import akka.stream.{ActorMaterializer, ClosedShape} import akka.stream.scaladsl.{Flow, GraphDSL, RunnableGraph, Sink, Source} import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord} import org.apache.kafka.clients.producer.ProducerRecord import org.apache.kafka.common.TopicPartition import org.apache.kafka.common.serialization.{ByteArrayDeserializer, ByteArraySerializer, StringDeserializer, StringSerializer} import scala.concurrent.duration._ object ProcessingKafkaApplication extends App { implicit val actorSystem = ActorSystem("SimpleStream") implicit val actorMaterializer = ActorMaterializer() val bootstrapServers = "localhost:9092" val kafkaTopic = "akka_streams_topic" val partition = 0 val subscription = Subscriptions.assignment(new TopicPartition(kafkaTopic, partition)) val consumerSettings = ConsumerSettings(actorSystem, new ByteArrayDeserializer, new StringDeserializer) .withBootstrapServers(bootstrapServers) .withGroupId("akka_streams_group") .withProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest") val producerSettings = ProducerSettings(actorSystem, new ByteArraySerializer, new StringSerializer) .withBootstrapServers(bootstrapServers) val runnableGraph = RunnableGraph.fromGraph(GraphDSL.create() { implicit builder => import GraphDSL.Implicits._ val tickSource = Source.tick(0 seconds, 5 seconds, "Hello from Akka Streams using Kafka!") val kafkaSource = Consumer.plainSource(consumerSettings, subscription) val kafkaSink = Producer.plainSink(producerSettings) val printlnSink = Sink.foreach(println) val mapToProducerRecord = Flow[String].map(elem => new ProducerRecord[Array[Byte], String](kafkaTopic, elem)) val mapFromConsumerRecord = Flow[ConsumerRecord[Array[Byte], String]].map(record => record.value()) tickSource ~> mapToProducerRecord ~> kafkaSink kafkaSource ~> mapFromConsumerRecord ~> printlnSink ClosedShape }) runnableGraph.run() }
Example 7
Source File: LagSim.scala From kafka-lag-exporter with Apache License 2.0 | 5 votes |
package com.lightbend.kafkalagexporter.integration import akka.actor.Cancellable import akka.actor.typed.scaladsl.Behaviors import akka.actor.typed.{Behavior, PostStop} import akka.kafka.{CommitterSettings, Subscriptions} import akka.kafka.scaladsl.{Committer, Consumer} import akka.kafka.testkit.scaladsl.KafkaSpec import akka.stream.OverflowStrategy import akka.stream.scaladsl.Keep import akka.stream.testkit.scaladsl.TestSink import org.scalatest.concurrent.ScalaFutures import scala.concurrent.Await import scala.concurrent.duration._ trait LagSim extends KafkaSpec with ScalaFutures { private implicit val patience: PatienceConfig = PatienceConfig(30.seconds, 1.second) class LagSimulator(topic: String, group: String) { private var offset: Int = 0 private val committerSettings = CommitterSettings(system).withMaxBatch(1).withParallelism(1) private lazy val (consumerControl, consumerProbe) = Consumer .committableSource(consumerDefaults.withGroupId(group), Subscriptions.topics(topic)) .buffer(size = 1, OverflowStrategy.backpressure) .map { elem => log.debug("Committing elem with offset: {}", elem.committableOffset.partitionOffset) elem.committableOffset.commitScaladsl() } .toMat(TestSink.probe)(Keep.both) .run() def produceElements(num: Int): Unit = { Await.result(produce(topic, offset to (offset + num)), remainingOrDefault) offset += num + 1 } // TODO: Replace this with regular Kafka Consumer for more fine-grained control over committing def consumeElements(num: Int): Unit = { consumerProbe .request(num) .expectNextN(num) } def shutdown(): Unit = { consumerControl.shutdown().futureValue consumerProbe.cancel() } } sealed trait Simulator case class Tick(produce: Int, consume: Int) extends Simulator def lagSimActor(simulator: LagSimulator, scheduledTick: Cancellable = Cancellable.alreadyCancelled): Behavior[Simulator] = Behaviors.receive[Simulator] { case (context, tick @ Tick(produce, consume)) => simulator.produceElements(produce) simulator.consumeElements(consume) lagSimActor(simulator, context.scheduleOnce(1 second, context.self, tick)) } receiveSignal { case (_, PostStop) => simulator.shutdown() scheduledTick.cancel() Behaviors.same } }
Example 8
Source File: ConsumerBuilder.scala From asura with MIT License | 5 votes |
package asura.kafka import akka.actor.ActorSystem import akka.kafka.scaladsl.Consumer import akka.kafka.scaladsl.Consumer.Control import akka.kafka.{ConsumerSettings, Subscriptions} import akka.stream.scaladsl.Source import io.confluent.kafka.serializers.{AbstractKafkaAvroSerDeConfig, KafkaAvroDeserializer, KafkaAvroDeserializerConfig} import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord} import org.apache.kafka.common.serialization.{Deserializer, StringDeserializer} import scala.collection.JavaConverters._ object ConsumerBuilder { def buildAvroSource[V]( brokerUrl: String, schemaRegisterUrl: String, group: String, topics: Set[String], resetType: String = "latest", )(implicit system: ActorSystem): Source[ConsumerRecord[String, V], Control] = { val kafkaAvroSerDeConfig = Map[String, Any]( AbstractKafkaAvroSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG -> schemaRegisterUrl, KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG -> true.toString ) val consumerSettings: ConsumerSettings[String, V] = { val kafkaAvroDeserializer = new KafkaAvroDeserializer() kafkaAvroDeserializer.configure(kafkaAvroSerDeConfig.asJava, false) val deserializer = kafkaAvroDeserializer.asInstanceOf[Deserializer[V]] ConsumerSettings(system, new StringDeserializer, deserializer) .withBootstrapServers(brokerUrl) .withGroupId(group) .withProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, resetType) } Consumer.plainSource(consumerSettings, Subscriptions.topics(topics)) } }
Example 9
Source File: TestConsumer.scala From asura with MIT License | 5 votes |
package asura.kafka.consumer import akka.actor.ActorSystem import akka.kafka.scaladsl.Consumer import akka.kafka.{ConsumerSettings, Subscriptions} import akka.stream.ActorMaterializer import akka.stream.scaladsl.Sink import com.typesafe.scalalogging.StrictLogging import org.apache.kafka.common.serialization.StringDeserializer object TestConsumer extends StrictLogging { def main(args: Array[String]): Unit = { logger.info("Start consumer") implicit val system = ActorSystem("consumer") implicit val materializer = ActorMaterializer() implicit val ec = system.dispatcher val consumerSettings = ConsumerSettings(system, new StringDeserializer, new StringDeserializer) .withGroupId("test-group1") val done = Consumer .plainSource(consumerSettings, Subscriptions.topics("test-topic")) .runWith(Sink.foreach(record => logger.info(s"topic:${record.topic()}, partition:${record.partition()}, offset:${record.offset()}, key:${record.key()}, value: ${record.value()}")) ) done onComplete { case scala.util.Success(_) => logger.info("Done"); system.terminate() case scala.util.Failure(err) => logger.error(err.toString); system.terminate() } } }
Example 10
Source File: TestAvroConsumer.scala From asura with MIT License | 5 votes |
package asura.kafka.consumer import akka.actor.ActorSystem import akka.kafka.scaladsl.Consumer import akka.kafka.{ConsumerSettings, Subscriptions} import akka.stream.ActorMaterializer import akka.stream.scaladsl.{Keep, Sink} import asura.kafka.avro.SampleAvroClass import com.typesafe.scalalogging.StrictLogging import io.confluent.kafka.serializers.{AbstractKafkaAvroSerDeConfig, KafkaAvroDeserializer, KafkaAvroDeserializerConfig} import org.apache.kafka.clients.consumer.ConsumerConfig import org.apache.kafka.common.serialization._ import scala.collection.JavaConverters._ object TestAvroConsumer extends StrictLogging { def main(args: Array[String]): Unit = { implicit val system = ActorSystem("consumer") implicit val materializer = ActorMaterializer() implicit val ec = system.dispatcher val schemaRegistryUrl = "" val bootstrapServers = "" val topic = "" val group = "" val kafkaAvroSerDeConfig = Map[String, Any]( AbstractKafkaAvroSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG -> schemaRegistryUrl, KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG -> true.toString ) val consumerSettings: ConsumerSettings[String, SampleAvroClass] = { val kafkaAvroDeserializer = new KafkaAvroDeserializer() kafkaAvroDeserializer.configure(kafkaAvroSerDeConfig.asJava, false) val deserializer = kafkaAvroDeserializer.asInstanceOf[Deserializer[SampleAvroClass]] ConsumerSettings(system, new StringDeserializer, deserializer) .withBootstrapServers(bootstrapServers) .withGroupId(group) .withProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest") } val samples = (1 to 3) val (control, result) = Consumer .plainSource(consumerSettings, Subscriptions.topics(topic)) .take(samples.size.toLong) .map(_.value()) .toMat(Sink.seq)(Keep.both) .run() control.shutdown() result.map(records => records.foreach(record => logger.info(s"${record}"))) } }
Example 11
Source File: CommitConsumerToSinkProducer.scala From kafka-scala-api with Apache License 2.0 | 5 votes |
package com.example.integration import akka.kafka.scaladsl.{Consumer, Producer} import akka.kafka.{ProducerMessage, Subscriptions} import org.apache.kafka.clients.producer.ProducerRecord import com.example._ object CommitConsumerToSinkProducer { val done = Consumer.committableSource(consumerSettings, Subscriptions.topics(topic1)) .map { msg => println(s"topic1 -> topic2: $msg") ProducerMessage.Message(new ProducerRecord[Array[Byte], String]( topic2, msg.record.value ), msg.committableOffset) } .runWith(Producer.commitableSink(producerSettings)) }
Example 12
Source File: CommitConsumerToFlowProducer.scala From kafka-scala-api with Apache License 2.0 | 5 votes |
package com.example.integration import akka.kafka.scaladsl.{Consumer, Producer} import akka.kafka.{ProducerMessage, Subscriptions} import akka.stream.scaladsl.Sink import com.example._ import org.apache.kafka.clients.producer.ProducerRecord object CommitConsumerToFlowProducer extends App { val done = Consumer.committableSource(consumerSettings, Subscriptions.topics(topic1)) .map { msg => println(s"topic1 -> topic2: $msg") ProducerMessage.Message(new ProducerRecord[Array[Byte], String]( topic2, msg.record.value ), msg.committableOffset) } .via(Producer.flow(producerSettings)) .mapAsync(producerSettings.parallelism) { result => result.message.passThrough.commitScaladsl() } .runWith(Sink.ignore) }
Example 13
Source File: PlainSourceConsumer.scala From kafka-scala-api with Apache License 2.0 | 5 votes |
package com.example.consumer import java.util.concurrent.atomic.AtomicLong import akka.Done import akka.kafka.Subscriptions import akka.kafka.scaladsl.Consumer import akka.stream.scaladsl.Sink import com.example._ import org.apache.kafka.clients.consumer.ConsumerRecord import org.apache.kafka.common.TopicPartition import scala.concurrent.ExecutionContext.Implicits.global import scala.concurrent.Future object PlainSourceConsumer extends App { val db = new DB db.loadOffset().foreach { fromOffset => val partition = 0 val subscription = Subscriptions.assignmentWithOffset( new TopicPartition(topic, partition) -> fromOffset ) val done = Consumer.plainSource(consumerSettings, subscription) .mapAsync(1)(db.save) .runWith(Sink.ignore) } } //Zookeeper or DB storage mock class DB { private val offset = new AtomicLong(2) def save(record: ConsumerRecord[Array[Byte], String]): Future[Done] = { println(s"DB.save: ${record.value}") offset.set(record.offset) Future.successful(Done) } def loadOffset(): Future[Long] = Future.successful(offset.get) def update(data: String): Future[Done] = { println(s"DB.update: $data") Future.successful(Done) } }
Example 14
Source File: BatchCommitConsumer.scala From kafka-scala-api with Apache License 2.0 | 5 votes |
package com.example.consumer import akka.Done import akka.kafka.ConsumerMessage.CommittableOffsetBatch import akka.kafka.Subscriptions import akka.kafka.scaladsl.Consumer import akka.stream.scaladsl.Sink import com.example._ import scala.concurrent.ExecutionContext.Implicits.global import scala.concurrent.Future object BatchCommitConsumer extends App { val done = Consumer.committableSource(consumerSettings, Subscriptions.topics(topic)) .mapAsync(1) { msg => println(s"BatchCommittableConsumer consume: $msg") Future.successful(Done).map(_ => msg.committableOffset) } .batch(max = 20, first => CommittableOffsetBatch.empty.updated(first)) { (batch, elem) => batch.updated(elem) } .mapAsync(3)(_.commitScaladsl()) .runWith(Sink.ignore) }
Example 15
Source File: TFServingModelServer.scala From model-serving-tutorial with Apache License 2.0 | 5 votes |
package com.lightbend.modelserving.tensorflowserving import akka.actor.typed.scaladsl.Behaviors import akka.actor.typed.scaladsl.adapter._ import akka.actor.typed.{ActorRef, ActorSystem} import akka.http.scaladsl.Http import akka.kafka.scaladsl.Consumer import akka.kafka.{ConsumerSettings, Subscriptions} import akka.stream.scaladsl.Sink import akka.stream.typed.scaladsl.{ActorFlow, ActorMaterializer} import akka.util.Timeout import com.lightbend.modelserving.configuration.ModelServingConfiguration import com.lightbend.modelserving.model.ServingResult import com.lightbend.modelserving.winemodel.DataRecord import org.apache.kafka.clients.consumer.ConsumerConfig import org.apache.kafka.common.serialization.ByteArrayDeserializer import scala.concurrent.duration._ import scala.util.Success object TFServingModelServer { import ModelServingConfiguration._ // Initialization implicit val modelServer = ActorSystem( Behaviors.setup[TFModelServerActor]( context => new TFModelServerBehaviour(context)), "ModelServing") implicit val materializer = ActorMaterializer() implicit val executionContext = modelServer.executionContext implicit val askTimeout = Timeout(30.seconds) // Configuration properties for the Kafka topic. val dataSettings = ConsumerSettings(modelServer.toUntyped, new ByteArrayDeserializer, new ByteArrayDeserializer) .withBootstrapServers(KAFKA_BROKER) .withGroupId(DATA_GROUP) .withProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest") def main(args: Array[String]): Unit = { println(s"Akka application that uses TensorFlow Serving, brokers $KAFKA_BROKER") // Data stream processing Consumer.atMostOnceSource(dataSettings, Subscriptions.topics(DATA_TOPIC)) .map(record => DataRecord.wineFromByteArray(record.value)).collect { case Success(a) => a } .via(ActorFlow.ask(1)(modelServer)((elem, replyTo : ActorRef[Option[ServingResult[Double]]]) => new ServeData(replyTo, elem))) .collect{ case Some(result) => result} .runWith(Sink.foreach(result => println(s"Model served in ${System.currentTimeMillis() - result.submissionTs} ms, with result ${result.result} " + s"(model ${result.name}, data type ${result.dataType})"))) // Rest Server startRest(modelServer) } def startRest(modelServerManager: ActorSystem[TFModelServerActor]): Unit = { implicit val timeout = Timeout(10.seconds) implicit val system = modelServerManager.toUntyped val host = "0.0.0.0" val port = MODELSERVING_PORT val routes = TFQueriesAkkaHttpResource.storeRoutes(modelServerManager)(modelServerManager.scheduler) val _ = Http().bindAndHandle(routes, host, port) map { binding => println(s"Starting models observer on port ${binding.localAddress}") } recover { case ex => println(s"Models observer could not bind to $host:$port - ${ex.getMessage}") } } }