org.apache.log4j.PropertyConfigurator Scala Examples
The following examples show how to use org.apache.log4j.PropertyConfigurator.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: KyroRegistrationDemo.scala From Scala-and-Spark-for-Big-Data-Analytics with MIT License | 5 votes |
package com.chapter14.Serilazition import org.apache.log4j.{ Level, LogManager, PropertyConfigurator } import org.apache.spark._ import org.apache.spark.rdd.RDD class MyMapper2(n: Int) { @transient lazy val log = org.apache.log4j.LogManager.getLogger("myLogger") def MyMapperDosomething(rdd: RDD[Int]): RDD[String] = rdd.map { i => log.warn("mapping: " + i) (i + n).toString } } //Companion object object MyMapper2 { def apply(n: Int): MyMapper = new MyMapper(n) } //Main object object KyroRegistrationDemo { def main(args: Array[String]) { val log = LogManager.getRootLogger log.setLevel(Level.WARN) val conf = new SparkConf() .setAppName("My App") .setMaster("local[*]") conf.registerKryoClasses(Array(classOf[MyMapper2])) conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") val sc = new SparkContext(conf) log.warn("Started") val data = sc.parallelize(1 to 100000) val mapper = MyMapper2(10) val other = mapper.MyMapperDosomething(data) other.collect() log.warn("Finished") } }
Example 2
Source File: MyLogCompleteDemo.scala From Scala-and-Spark-for-Big-Data-Analytics with MIT License | 5 votes |
package com.chapter14.Serilazition import org.apache.log4j.{Level, LogManager, PropertyConfigurator} import org.apache.spark._ import org.apache.spark.rdd.RDD class MyMapper(n: Int) extends Serializable{ @transient lazy val log = org.apache.log4j.LogManager.getLogger("myLogger") def MyMapperDosomething(rdd: RDD[Int]): RDD[String] = rdd.map{ i => log.warn("mapping: " + i) (i + n).toString } } //Companion object object MyMapper { def apply(n: Int): MyMapper = new MyMapper(n) } //Main object object MyLog { def main(args: Array[String]) { val log = LogManager.getRootLogger log.setLevel(Level.WARN) val conf = new SparkConf() .setAppName("My App") .setMaster("local[*]") conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") val sc = new SparkContext(conf) log.warn("Started") val data = sc.parallelize(1 to 100000) val mapper = MyMapper(1) val other = mapper.MyMapperDosomething(data) other.collect() log.warn("Finished") } }
Example 3
Source File: SparkPredictionTrainer.scala From smart-meter with MIT License | 5 votes |
package com.logimethods.nats.connector.spark.app import java.util.Properties; import java.io.File import java.io.Serializable import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.storage.StorageLevel; import org.apache.spark.streaming._ import io.nats.client.ConnectionFactory._ import java.nio.ByteBuffer import org.apache.log4j.{Level, LogManager, PropertyConfigurator} import com.logimethods.connector.nats.to_spark._ import com.logimethods.scala.connector.spark.to_nats._ import org.apache.spark.ml.classification.MultilayerPerceptronClassifier import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator import java.util.function._ import java.time.{LocalDateTime, ZoneOffset} import java.time.DayOfWeek._ import org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel object SparkPredictionTrainer extends App with SparkPredictionProcessor { log.setLevel(Level.WARN) val (properties, targets, logLevel, sc, inputNatsStreaming, inputSubject, outputSubject, clusterId, outputNatsStreaming, natsUrl) = setup(args) val streamingDuration = scala.util.Properties.envOrElse("STREAMING_DURATION", "2000").toInt println("STREAMING_DURATION = " + streamingDuration) new Thread(new Runnable { def run() { while( true ){ try { val data = SparkPredictionProcessor.getData(sc, THRESHOLD) val model = trainer.fit(data) model.write.overwrite.save(PREDICTION_MODEL_PATH) println("New model of size " + data.count() + " trained: " + model.uid) Thread.sleep(streamingDuration) } catch { case e: Throwable => log.error(e) } } } }).start() }
Example 4
Source File: SparkProcessor.scala From smart-meter with MIT License | 5 votes |
package com.logimethods.nats.connector.spark.app import java.util.Properties; import java.io.File import java.io.Serializable import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.storage.StorageLevel; import org.apache.spark.streaming._ import io.nats.client.Nats._ import io.nats.client.ConnectionFactory._ import java.nio.ByteBuffer import org.apache.log4j.{Level, LogManager, PropertyConfigurator} import com.logimethods.connector.nats.to_spark._ import com.logimethods.scala.connector.spark.to_nats._ import java.util.function._ import java.time.{LocalDateTime, ZoneOffset} trait SparkProcessor { def setup(args: Array[String]) = { val inputSubject = args(0) // val inputNatsStreaming = inputSubject.toUpperCase.contains("STREAMING") val outputSubject = args(1) // val outputNatsStreaming = outputSubject.toUpperCase.contains("STREAMING") println("Will process messages from '" + inputSubject + "' to '" + outputSubject + "'") val logLevel = scala.util.Properties.envOrElse("LOG_LEVEL", "INFO") println("LOG_LEVEL = " + logLevel) val targets = scala.util.Properties.envOrElse("TARGETS", "ALL") println("TARGETS = " + targets) val cassandraUrl = System.getenv("CASSANDRA_URL") println("CASSANDRA_URL = " + cassandraUrl) val sparkMasterUrl = System.getenv("SPARK_MASTER_URL") println("SPARK_MASTER_URL = " + sparkMasterUrl) val sparkCoresMax = System.getenv("SPARK_CORES_MAX") println("SPARK_CORES_MAX = " + sparkCoresMax) val conf = new SparkConf() .setAppName(args(2)) .setMaster(sparkMasterUrl) .set("spark.cores.max", sparkCoresMax) .set("spark.cassandra.connection.host", cassandraUrl); val sc = new SparkContext(conf); // val streamingDuration = scala.util.Properties.envOrElse("STREAMING_DURATION", "2000").toInt // val ssc = new StreamingContext(sc, new Duration(streamingDuration)); /// ssc.checkpoint("/spark/storage") val properties = new Properties(); val natsUrl = System.getenv("NATS_URI") println("NATS_URI = " + natsUrl) properties.put("servers", natsUrl) properties.put(PROP_URL, natsUrl) val clusterId = System.getenv("NATS_CLUSTER_ID") val inputNatsStreaming = inputSubject.toUpperCase.contains("STREAMING") val outputNatsStreaming = outputSubject.toUpperCase.contains("STREAMING") (properties, targets, logLevel, sc, inputNatsStreaming, inputSubject, outputSubject, clusterId, outputNatsStreaming, natsUrl) } def dataDecoder: Array[Byte] => Tuple2[Long,Float] = bytes => { val buffer = ByteBuffer.wrap(bytes); val epoch = buffer.getLong() val value = buffer.getFloat() (epoch, value) } } trait SparkStreamingProcessor extends SparkProcessor { def setupStreaming(args: Array[String]) = { val (properties, target, logLevel, sc, inputNatsStreaming, inputSubject, outputSubject, clusterId, outputNatsStreaming, natsUrl) = setup(args) val streamingDuration = scala.util.Properties.envOrElse("STREAMING_DURATION", "2000").toInt println("STREAMING_DURATION = " + streamingDuration) val ssc = new StreamingContext(sc, new Duration(streamingDuration)); // ssc.checkpoint("/spark/storage") (properties, target, logLevel, sc, ssc, inputNatsStreaming, inputSubject, outputSubject, clusterId, outputNatsStreaming, natsUrl, streamingDuration) } }
Example 5
Source File: SparkTemperatureProcessor.scala From smart-meter with MIT License | 5 votes |
package com.logimethods.nats.connector.spark.app import java.util.Properties; import java.io.File import java.io.Serializable import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.storage.StorageLevel; import org.apache.spark.streaming._ import com.datastax.spark.connector.streaming._ import com.datastax.spark.connector.SomeColumns import io.nats.client.ConnectionFactory._ import java.nio.ByteBuffer import org.apache.log4j.{Level, LogManager, PropertyConfigurator} import com.logimethods.connector.nats.to_spark._ import com.logimethods.scala.connector.spark.to_nats._ import java.util.function._ import java.time.{LocalDateTime, ZoneOffset} object SparkTemperatureProcessor extends App with SparkStreamingProcessor { val log = LogManager.getRootLogger log.setLevel(Level.WARN) val (properties, target, logLevel, sc, ssc, inputNatsStreaming, inputSubject, outputSubject, clusterId, outputNatsStreaming, natsUrl, streamingDuration) = setupStreaming(args) // Temperatures // val temperatures = if (inputNatsStreaming) { NatsToSparkConnector .receiveFromNatsStreaming(classOf[Tuple2[Long,Float]], StorageLevel.MEMORY_ONLY, clusterId) .withNatsURL(natsUrl) .withSubjects(inputSubject) .withDataDecoder(dataDecoder) .asStreamOf(ssc) } else { NatsToSparkConnector .receiveFromNats(classOf[Tuple2[Long,Float]], StorageLevel.MEMORY_ONLY) .withProperties(properties) .withSubjects(inputSubject) .withDataDecoder(dataDecoder) .asStreamOf(ssc) } // Ideally, should be the AVG val singleTemperature = temperatures.reduceByKey(Math.max(_,_)) if (logLevel.contains("TEMPERATURE")) { singleTemperature.print() } singleTemperature.saveToCassandra("smartmeter", "temperature") val temperatureReport = singleTemperature.map({case (epoch, temperature) => (s"""{"epoch": $epoch, "temperature": $temperature}""") }) SparkToNatsConnectorPool.newPool() .withProperties(properties) .withSubjects(outputSubject) // "smartmeter.extract.temperature" .publishToNats(temperatureReport) // Start // ssc.start(); ssc.awaitTermination() }
Example 6
Source File: SparkBatch.scala From smart-meter with MIT License | 5 votes |
package com.logimethods.nats.connector.spark.app import java.util.Properties; import java.io.File import java.io.Serializable import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.log4j.{Level, LogManager, PropertyConfigurator} import org.apache.log4j.Logger import org.apache.spark.sql.SparkSession //import com.datastax.spark.connector._ //import com.datastax.spark.connector.cql.CassandraConnector // @see http://stackoverflow.com/questions/39423131/how-to-use-cassandra-context-in-spark-2-0 // @see https://databricks.com/blog/2016/08/15/how-to-use-sparksession-in-apache-spark-2-0.html // @see https://dzone.com/articles/cassandra-with-spark-20-building-rest-api object SparkBatch extends App { val logLevel = System.getenv("APP_BATCH_LOG_LEVEL") println("APP_BATCH_LOG_LEVEL = " + logLevel) if ("DEBUG" != logLevel) { Logger.getLogger("org").setLevel(Level.OFF) } val cassandraUrl = System.getenv("CASSANDRA_URL") println("CASSANDRA_URL = " + cassandraUrl) val sparkMasterUrl = System.getenv("SPARK_MASTER_URL") println("SPARK_MASTER_URL = " + sparkMasterUrl) val spark = SparkSession .builder() .master(sparkMasterUrl) .appName("Smartmeter Batch") .config("spark.cassandra.connection.host", cassandraUrl) // .config("spark.sql.warehouse.dir", warehouseLocation) //.enableHiveSupport() .getOrCreate() spark .read .format("org.apache.spark.sql.cassandra") .options(Map("keyspace" -> "smartmeter", "table" -> "raw_data")) .load .createOrReplaceTempView("raw_data") val rawVoltageData = spark.sql("select * from raw_data") rawVoltageData.show(10) // @see http://stackoverflow.com/questions/40324153/what-is-the-best-way-to-insert-update-rows-in-cassandra-table-via-java-spark //Save data to Cassandra import org.apache.spark.sql.SaveMode avgByTransformer.write.format("org.apache.spark.sql.cassandra").options(Map("keyspace" -> "smartmeter", "table" -> "avg_voltage_by_transformer")).mode(SaveMode.Overwrite).save(); }
Example 7
Source File: SparkLocalContext.scala From cosine-lsh-join-spark with MIT License | 5 votes |
package com.soundcloud.lsh import java.util.Properties import org.scalatest.{BeforeAndAfterAll, Suite} import org.apache.log4j.PropertyConfigurator import org.apache.spark.{SparkConf, SparkContext} trait SparkLocalContext extends BeforeAndAfterAll { self: Suite => var sc: SparkContext = _ override def beforeAll() { loadTestLog4jConfig() val conf = new SparkConf(). setAppName("test"). setMaster("local") sc = new SparkContext(conf) super.beforeAll() } override def afterAll() { if (sc != null) sc.stop() super.afterAll() } private def loadTestLog4jConfig(): Unit = { val props = new Properties props.load(getClass.getResourceAsStream("/log4j.properties")) PropertyConfigurator.configure(props) } }