org.apache.spark.ml.feature.DCT Scala Examples

The following examples show how to use org.apache.spark.ml.feature.DCT. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
Example 1
Source File: DCTExample.scala    From drizzle-spark   with Apache License 2.0 5 votes vote down vote up
// scalastyle:off println
package org.apache.spark.examples.ml

// $example on$
import org.apache.spark.ml.feature.DCT
import org.apache.spark.ml.linalg.Vectors
// $example off$
import org.apache.spark.sql.SparkSession

object DCTExample {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder
      .appName("DCTExample")
      .getOrCreate()

    // $example on$
    val data = Seq(
      Vectors.dense(0.0, 1.0, -2.0, 3.0),
      Vectors.dense(-1.0, 2.0, 4.0, -7.0),
      Vectors.dense(14.0, -2.0, -5.0, 1.0))

    val df = spark.createDataFrame(data.map(Tuple1.apply)).toDF("features")

    val dct = new DCT()
      .setInputCol("features")
      .setOutputCol("featuresDCT")
      .setInverse(false)

    val dctDf = dct.transform(df)
    dctDf.select("featuresDCT").show(false)
    // $example off$

    spark.stop()
  }
}
// scalastyle:on println 
Example 2
Source File: LocalDCT.scala    From spark-ml-serving   with Apache License 2.0 5 votes vote down vote up
package io.hydrosphere.spark_ml_serving.preprocessors

import io.hydrosphere.spark_ml_serving.TypedTransformerConverter
import io.hydrosphere.spark_ml_serving.common.utils.DataUtils._
import io.hydrosphere.spark_ml_serving.common._
import org.apache.spark.ml.feature.DCT
import org.apache.spark.ml.linalg.Vector

class LocalDCT(override val sparkTransformer: DCT) extends LocalTransformer[DCT] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val method = classOf[DCT].getMethod("createTransformFunc")
        val newData = column.data.mapToMlVectors.map { r =>
          method.invoke(sparkTransformer).asInstanceOf[Vector => Vector](r).toList
        }
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalDCT extends SimpleModelLoader[DCT] with TypedTransformerConverter[DCT] {
  override def build(metadata: Metadata, data: LocalData): DCT = {
    new DCT(metadata.uid)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
      .setInverse(metadata.paramMap("inverse").asInstanceOf[Boolean])
  }

  override implicit def toLocal(transformer: DCT) = new LocalDCT(transformer)
} 
Example 3
Source File: DCTOp.scala    From mleap   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.ml.bundle.ops.feature

import ml.combust.bundle.BundleContext
import ml.combust.bundle.dsl._
import ml.combust.bundle.op.{OpModel, OpNode}
import ml.combust.mleap.core.types.TensorShape
import org.apache.spark.ml.bundle.{ParamSpec, SimpleParamSpec, SimpleSparkOp, SparkBundleContext}
import org.apache.spark.ml.feature.DCT
import org.apache.spark.ml.param.Param
import org.apache.spark.sql.mleap.TypeConverters.sparkToMleapDataShape


class DCTOp extends SimpleSparkOp[DCT] {
  override val Model: OpModel[SparkBundleContext, DCT] = new OpModel[SparkBundleContext, DCT] {
    override val klazz: Class[DCT] = classOf[DCT]

    override def opName: String = Bundle.BuiltinOps.feature.dct

    override def store(model: Model, obj: DCT)
                      (implicit context: BundleContext[SparkBundleContext]): Model = {
      val dataset = context.context.dataset.get
      val inputShape = sparkToMleapDataShape(dataset.schema(obj.getInputCol), dataset).asInstanceOf[TensorShape]

      model.withValue("inverse", Value.boolean(obj.getInverse))
        .withValue("input_size", Value.int(inputShape.dimensions.get.head))
    }

    override def load(model: Model)
                     (implicit context: BundleContext[SparkBundleContext]): DCT = {
      new DCT(uid = "").setInverse(model.value("inverse").getBoolean)
    }
  }

  override def sparkLoad(uid: String, shape: NodeShape, model: DCT): DCT = {
    new DCT(uid = uid).setInverse(model.getInverse)
  }

  override def sparkInputs(obj: DCT): Seq[ParamSpec] = {
    Seq("input" -> obj.inputCol)
  }

  override def sparkOutputs(obj: DCT): Seq[SimpleParamSpec] = {
    Seq("output" -> obj.outputCol)
  }
} 
Example 4
Source File: DCTParitySpec.scala    From mleap   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.ml.parity.feature

import org.apache.spark.ml.feature.{DCT, VectorAssembler}
import org.apache.spark.ml.{Pipeline, Transformer}
import org.apache.spark.ml.parity.SparkParityBase
import org.apache.spark.sql._


class DCTParitySpec extends SparkParityBase {
  override val dataset: DataFrame = baseDataset.select("dti", "loan_amount")
  override val sparkTransformer: Transformer = new Pipeline().setStages(Array(new VectorAssembler().
    setInputCols(Array("dti", "loan_amount")).
    setOutputCol("features"),
    new DCT(uid = "dct").
      setInverse(true).
      setInputCol("features").
      setOutputCol("filter_features"))).fit(dataset)
} 
Example 5
Source File: DCTExample.scala    From sparkoscope   with Apache License 2.0 5 votes vote down vote up
// scalastyle:off println
package org.apache.spark.examples.ml

// $example on$
import org.apache.spark.ml.feature.DCT
import org.apache.spark.ml.linalg.Vectors
// $example off$
import org.apache.spark.sql.SparkSession

object DCTExample {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder
      .appName("DCTExample")
      .getOrCreate()

    // $example on$
    val data = Seq(
      Vectors.dense(0.0, 1.0, -2.0, 3.0),
      Vectors.dense(-1.0, 2.0, 4.0, -7.0),
      Vectors.dense(14.0, -2.0, -5.0, 1.0))

    val df = spark.createDataFrame(data.map(Tuple1.apply)).toDF("features")

    val dct = new DCT()
      .setInputCol("features")
      .setOutputCol("featuresDCT")
      .setInverse(false)

    val dctDf = dct.transform(df)
    dctDf.select("featuresDCT").show(false)
    // $example off$

    spark.stop()
  }
}
// scalastyle:on println 
Example 6
Source File: DCTExample.scala    From multi-tenancy-spark   with Apache License 2.0 5 votes vote down vote up
// scalastyle:off println
package org.apache.spark.examples.ml

// $example on$
import org.apache.spark.ml.feature.DCT
import org.apache.spark.ml.linalg.Vectors
// $example off$
import org.apache.spark.sql.SparkSession

object DCTExample {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder
      .appName("DCTExample")
      .getOrCreate()

    // $example on$
    val data = Seq(
      Vectors.dense(0.0, 1.0, -2.0, 3.0),
      Vectors.dense(-1.0, 2.0, 4.0, -7.0),
      Vectors.dense(14.0, -2.0, -5.0, 1.0))

    val df = spark.createDataFrame(data.map(Tuple1.apply)).toDF("features")

    val dct = new DCT()
      .setInputCol("features")
      .setOutputCol("featuresDCT")
      .setInverse(false)

    val dctDf = dct.transform(df)
    dctDf.select("featuresDCT").show(false)
    // $example off$

    spark.stop()
  }
}
// scalastyle:on println 
Example 7
Source File: DiscreteCosineTransformer.scala    From seahorse   with Apache License 2.0 5 votes vote down vote up
package ai.deepsense.deeplang.doperables.spark.wrappers.transformers

import org.apache.spark.ml.feature.DCT

import ai.deepsense.deeplang.doperables.SparkTransformerAsMultiColumnTransformer
import ai.deepsense.deeplang.params.Param
import ai.deepsense.deeplang.params.wrappers.spark.BooleanParamWrapper

class DiscreteCosineTransformer extends SparkTransformerAsMultiColumnTransformer[DCT] {

  override def convertInputNumericToVector: Boolean = true
  override def convertOutputVectorToDouble: Boolean = true

  val inverse = new BooleanParamWrapper[DCT](
    name = "inverse",
    description = Some("Indicates whether to perform the inverse DCT (true) or forward DCT (false)."),
    sparkParamGetter = _.inverse)
  setDefault(inverse, false)

  override protected def getSpecificParams: Array[Param[_]] = Array(inverse)
} 
Example 8
Source File: DCTExample.scala    From spark1.52   with Apache License 2.0 5 votes vote down vote up
// scalastyle:off println
package org.apache.spark.examples.ml

// $example on$
import org.apache.spark.ml.feature.DCT
import org.apache.spark.mllib.linalg.Vectors
// $example off$
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.{SQLContext, DataFrame}

object DCTExample {
  def main(args: Array[String]): Unit = {
    
    val conf = new SparkConf().setAppName("DCTExample").setMaster("local[4]")
    val sc = new SparkContext(conf)
  
    val sqlContext = new SQLContext(sc)
    import sqlContext.implicits._
    
   

    // $example on$
    val data = Seq(
      Vectors.dense(0.0, 1.0, -2.0, 3.0),
      Vectors.dense(-1.0, 2.0, 4.0, -7.0),
      Vectors.dense(14.0, -2.0, -5.0, 1.0))

    val df = sqlContext.createDataFrame(data.map(Tuple1.apply)).toDF("features")
    //离散余弦变换(DCT)
    val dct = new DCT()
      .setInputCol("features")
      .setOutputCol("featuresDCT")
      .setInverse(false)
    //transform()方法将DataFrame转化为另外一个DataFrame的算法
    val dctDf = dct.transform(df)
    
    dctDf.select("featuresDCT").show(3)
    // $example off$

    sc.stop()
  }
}
// scalastyle:on println 
Example 9
Source File: DCTExample.scala    From Spark-2.3.1   with Apache License 2.0 5 votes vote down vote up
// scalastyle:off println
package org.apache.spark.examples.ml

// $example on$
import org.apache.spark.ml.feature.DCT
import org.apache.spark.ml.linalg.Vectors
// $example off$
import org.apache.spark.sql.SparkSession

object DCTExample {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder
      .appName("DCTExample")
      .getOrCreate()

    // $example on$
    val data = Seq(
      Vectors.dense(0.0, 1.0, -2.0, 3.0),
      Vectors.dense(-1.0, 2.0, 4.0, -7.0),
      Vectors.dense(14.0, -2.0, -5.0, 1.0))

    val df = spark.createDataFrame(data.map(Tuple1.apply)).toDF("features")

    val dct = new DCT()
      .setInputCol("features")
      .setOutputCol("featuresDCT")
      .setInverse(false)

    val dctDf = dct.transform(df)
    dctDf.select("featuresDCT").show(false)
    // $example off$

    spark.stop()
  }
}
// scalastyle:on println 
Example 10
Source File: DCTExample.scala    From BigDatalog   with Apache License 2.0 5 votes vote down vote up
// scalastyle:off println
package org.apache.spark.examples.ml

// $example on$
import org.apache.spark.ml.feature.DCT
import org.apache.spark.mllib.linalg.Vectors
// $example off$
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}

object DCTExample {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("DCTExample")
    val sc = new SparkContext(conf)
    val sqlContext = new SQLContext(sc)

    // $example on$
    val data = Seq(
      Vectors.dense(0.0, 1.0, -2.0, 3.0),
      Vectors.dense(-1.0, 2.0, 4.0, -7.0),
      Vectors.dense(14.0, -2.0, -5.0, 1.0))

    val df = sqlContext.createDataFrame(data.map(Tuple1.apply)).toDF("features")

    val dct = new DCT()
      .setInputCol("features")
      .setOutputCol("featuresDCT")
      .setInverse(false)

    val dctDf = dct.transform(df)
    dctDf.select("featuresDCT").show(3)
    // $example off$
    sc.stop()
  }
}
// scalastyle:on println 
Example 11
Source File: DiscreteCosineTransformer.scala    From seahorse-workflow-executor   with Apache License 2.0 5 votes vote down vote up
package io.deepsense.deeplang.doperables.spark.wrappers.transformers

import org.apache.spark.ml.feature.DCT

import io.deepsense.deeplang.doperables.SparkTransformerAsMultiColumnTransformer
import io.deepsense.deeplang.params.Param
import io.deepsense.deeplang.params.wrappers.spark.BooleanParamWrapper

class DiscreteCosineTransformer extends SparkTransformerAsMultiColumnTransformer[DCT] {

  override def convertInputNumericToVector: Boolean = true
  override def convertOutputVectorToDouble: Boolean = true

  val inverse = new BooleanParamWrapper[DCT](
    name = "inverse",
    description = Some("Indicates whether to perform the inverse DCT (true) or forward DCT (false)."),
    sparkParamGetter = _.inverse)
  setDefault(inverse, false)

  override protected def getSpecificParams: Array[Param[_]] = Array(inverse)
}