org.apache.spark.ml.feature.PolynomialExpansion Scala Examples
The following examples show how to use org.apache.spark.ml.feature.PolynomialExpansion.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: PolynomialExpansionExample.scala From drizzle-spark with Apache License 2.0 | 5 votes |
// scalastyle:off println package org.apache.spark.examples.ml // $example on$ import org.apache.spark.ml.feature.PolynomialExpansion import org.apache.spark.ml.linalg.Vectors // $example off$ import org.apache.spark.sql.SparkSession object PolynomialExpansionExample { def main(args: Array[String]): Unit = { val spark = SparkSession .builder .appName("PolynomialExpansionExample") .getOrCreate() // $example on$ val data = Array( Vectors.dense(2.0, 1.0), Vectors.dense(0.0, 0.0), Vectors.dense(3.0, -1.0) ) val df = spark.createDataFrame(data.map(Tuple1.apply)).toDF("features") val polyExpansion = new PolynomialExpansion() .setInputCol("features") .setOutputCol("polyFeatures") .setDegree(3) val polyDF = polyExpansion.transform(df) polyDF.show(false) // $example off$ spark.stop() } } // scalastyle:on println
Example 2
Source File: LocalPolynomialExpansion.scala From spark-ml-serving with Apache License 2.0 | 5 votes |
package io.hydrosphere.spark_ml_serving.preprocessors import io.hydrosphere.spark_ml_serving.TypedTransformerConverter import io.hydrosphere.spark_ml_serving.common.utils.DataUtils._ import io.hydrosphere.spark_ml_serving.common._ import org.apache.spark.ml.feature.PolynomialExpansion import org.apache.spark.ml.linalg.{Vector, Vectors} class LocalPolynomialExpansion(override val sparkTransformer: PolynomialExpansion) extends LocalTransformer[PolynomialExpansion] { override def transform(localData: LocalData): LocalData = { localData.column(sparkTransformer.getInputCol) match { case Some(column) => val method = classOf[PolynomialExpansion].getMethod("createTransformFunc") val newData = column.data.map(r => { val row = r.asInstanceOf[List[Any]].map(_.toString.toDouble).toArray val vector: Vector = Vectors.dense(row) method.invoke(sparkTransformer).asInstanceOf[Vector => Vector](vector).toList }) localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData)) case None => localData } } } object LocalPolynomialExpansion extends SimpleModelLoader[PolynomialExpansion] with TypedTransformerConverter[PolynomialExpansion] { override def build(metadata: Metadata, data: LocalData): PolynomialExpansion = { new PolynomialExpansion(metadata.uid) .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String]) .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String]) .setDegree(metadata.paramMap("degree").asInstanceOf[Number].intValue()) } override implicit def toLocal( transformer: PolynomialExpansion ) = new LocalPolynomialExpansion(transformer) }
Example 3
Source File: PolynomialExpansionOp.scala From mleap with Apache License 2.0 | 5 votes |
package org.apache.spark.ml.bundle.ops.feature import ml.combust.bundle.BundleContext import ml.combust.bundle.dsl._ import ml.combust.bundle.op.{OpModel, OpNode} import ml.combust.mleap.core.types.TensorShape import org.apache.spark.ml.bundle.{ParamSpec, SimpleParamSpec, SimpleSparkOp, SparkBundleContext} import org.apache.spark.ml.feature.PolynomialExpansion import org.apache.spark.sql.mleap.TypeConverters.sparkToMleapDataShape class PolynomialExpansionOp extends SimpleSparkOp[PolynomialExpansion] { override val Model: OpModel[SparkBundleContext, PolynomialExpansion] = new OpModel[SparkBundleContext, PolynomialExpansion] { override val klazz: Class[PolynomialExpansion] = classOf[PolynomialExpansion] override def opName: String = Bundle.BuiltinOps.feature.polynomial_expansion override def store(model: Model, obj: PolynomialExpansion) (implicit context: BundleContext[SparkBundleContext]): Model = { val dataset = context.context.dataset.get val inputShape = sparkToMleapDataShape(dataset.schema(obj.getInputCol), dataset).asInstanceOf[TensorShape] model.withValue("degree", Value.long(obj.getDegree)) .withValue("input_size", Value.long(inputShape.dimensions.get.head)) } override def load(model: Model) (implicit context: BundleContext[SparkBundleContext]): PolynomialExpansion = { new PolynomialExpansion(uid = "").setDegree(model.value("degree").getLong.toInt) } } override def sparkLoad(uid: String, shape: NodeShape, model: PolynomialExpansion): PolynomialExpansion = { new PolynomialExpansion(uid = uid).setDegree(model.getDegree) } override def sparkInputs(obj: PolynomialExpansion): Seq[ParamSpec] = { Seq("input" -> obj.inputCol) } override def sparkOutputs(obj: PolynomialExpansion): Seq[SimpleParamSpec] = { Seq("output" -> obj.outputCol) } }
Example 4
Source File: PolynomialExpansionParitySpec.scala From mleap with Apache License 2.0 | 5 votes |
package org.apache.spark.ml.parity.feature import org.apache.spark.ml.parity.SparkParityBase import org.apache.spark.ml.feature.{PolynomialExpansion, VectorAssembler} import org.apache.spark.ml.{Pipeline, Transformer} import org.apache.spark.sql.DataFrame class PolynomialExpansionParitySpec extends SparkParityBase { override val dataset: DataFrame = baseDataset.select("dti", "loan_amount") override val sparkTransformer: Transformer = new Pipeline().setStages(Array(new VectorAssembler(). setInputCols(Array("dti", "loan_amount")). setOutputCol("features"), new PolynomialExpansion(). setInputCol("features"). setOutputCol("poly"). setDegree(3))).fit(dataset) }
Example 5
Source File: PolynomialExpansionExample.scala From sparkoscope with Apache License 2.0 | 5 votes |
// scalastyle:off println package org.apache.spark.examples.ml // $example on$ import org.apache.spark.ml.feature.PolynomialExpansion import org.apache.spark.ml.linalg.Vectors // $example off$ import org.apache.spark.sql.SparkSession object PolynomialExpansionExample { def main(args: Array[String]): Unit = { val spark = SparkSession .builder .appName("PolynomialExpansionExample") .getOrCreate() // $example on$ val data = Array( Vectors.dense(2.0, 1.0), Vectors.dense(0.0, 0.0), Vectors.dense(3.0, -1.0) ) val df = spark.createDataFrame(data.map(Tuple1.apply)).toDF("features") val polyExpansion = new PolynomialExpansion() .setInputCol("features") .setOutputCol("polyFeatures") .setDegree(3) val polyDF = polyExpansion.transform(df) polyDF.show(false) // $example off$ spark.stop() } } // scalastyle:on println
Example 6
Source File: PolynomialExpansionExample.scala From multi-tenancy-spark with Apache License 2.0 | 5 votes |
// scalastyle:off println package org.apache.spark.examples.ml // $example on$ import org.apache.spark.ml.feature.PolynomialExpansion import org.apache.spark.ml.linalg.Vectors // $example off$ import org.apache.spark.sql.SparkSession object PolynomialExpansionExample { def main(args: Array[String]): Unit = { val spark = SparkSession .builder .appName("PolynomialExpansionExample") .getOrCreate() // $example on$ val data = Array( Vectors.dense(2.0, 1.0), Vectors.dense(0.0, 0.0), Vectors.dense(3.0, -1.0) ) val df = spark.createDataFrame(data.map(Tuple1.apply)).toDF("features") val polyExpansion = new PolynomialExpansion() .setInputCol("features") .setOutputCol("polyFeatures") .setDegree(3) val polyDF = polyExpansion.transform(df) polyDF.show(false) // $example off$ spark.stop() } } // scalastyle:on println
Example 7
Source File: PolynomialExpander.scala From seahorse with Apache License 2.0 | 5 votes |
package ai.deepsense.deeplang.doperables.spark.wrappers.transformers import org.apache.spark.ml.feature.PolynomialExpansion import ai.deepsense.deeplang.doperables.SparkTransformerAsMultiColumnTransformer import ai.deepsense.deeplang.params.Param import ai.deepsense.deeplang.params.validators.RangeValidator import ai.deepsense.deeplang.params.wrappers.spark.IntParamWrapper class PolynomialExpander extends SparkTransformerAsMultiColumnTransformer[PolynomialExpansion] { override def convertInputNumericToVector: Boolean = true override def convertOutputVectorToDouble: Boolean = false val degree = new IntParamWrapper[PolynomialExpansion]( name = "degree", description = Some("The polynomial degree to expand."), sparkParamGetter = _.degree, validator = RangeValidator(2.0, Int.MaxValue, step = Some(1.0))) setDefault(degree, 2.0) override protected def getSpecificParams: Array[Param[_]] = Array(degree) }
Example 8
Source File: PolynomialExpansionExample.scala From Spark-2.3.1 with Apache License 2.0 | 5 votes |
// scalastyle:off println package org.apache.spark.examples.ml // $example on$ import org.apache.spark.ml.feature.PolynomialExpansion import org.apache.spark.ml.linalg.Vectors // $example off$ import org.apache.spark.sql.SparkSession object PolynomialExpansionExample { def main(args: Array[String]): Unit = { val spark = SparkSession .builder .appName("PolynomialExpansionExample") .getOrCreate() // $example on$ val data = Array( Vectors.dense(2.0, 1.0), Vectors.dense(0.0, 0.0), Vectors.dense(3.0, -1.0) ) val df = spark.createDataFrame(data.map(Tuple1.apply)).toDF("features") val polyExpansion = new PolynomialExpansion() .setInputCol("features") .setOutputCol("polyFeatures") .setDegree(3) val polyDF = polyExpansion.transform(df) polyDF.show(false) // $example off$ spark.stop() } } // scalastyle:on println
Example 9
Source File: PolynomialExpansionExample.scala From BigDatalog with Apache License 2.0 | 5 votes |
// scalastyle:off println package org.apache.spark.examples.ml // $example on$ import org.apache.spark.ml.feature.PolynomialExpansion import org.apache.spark.mllib.linalg.Vectors // $example off$ import org.apache.spark.sql.SQLContext import org.apache.spark.{SparkConf, SparkContext} object PolynomialExpansionExample { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("PolynomialExpansionExample") val sc = new SparkContext(conf) val sqlContext = new SQLContext(sc) // $example on$ val data = Array( Vectors.dense(-2.0, 2.3), Vectors.dense(0.0, 0.0), Vectors.dense(0.6, -1.1) ) val df = sqlContext.createDataFrame(data.map(Tuple1.apply)).toDF("features") val polynomialExpansion = new PolynomialExpansion() .setInputCol("features") .setOutputCol("polyFeatures") .setDegree(3) val polyDF = polynomialExpansion.transform(df) polyDF.select("polyFeatures").take(3).foreach(println) // $example off$ sc.stop() } } // scalastyle:on println
Example 10
Source File: PolynomialExpander.scala From seahorse-workflow-executor with Apache License 2.0 | 5 votes |
package io.deepsense.deeplang.doperables.spark.wrappers.transformers import org.apache.spark.ml.feature.PolynomialExpansion import io.deepsense.deeplang.doperables.SparkTransformerAsMultiColumnTransformer import io.deepsense.deeplang.params.Param import io.deepsense.deeplang.params.validators.RangeValidator import io.deepsense.deeplang.params.wrappers.spark.IntParamWrapper class PolynomialExpander extends SparkTransformerAsMultiColumnTransformer[PolynomialExpansion] { override def convertInputNumericToVector: Boolean = true override def convertOutputVectorToDouble: Boolean = false val degree = new IntParamWrapper[PolynomialExpansion]( name = "degree", description = Some("The polynomial degree to expand."), sparkParamGetter = _.degree, validator = RangeValidator(2.0, Int.MaxValue, step = Some(1.0))) setDefault(degree, 2.0) override protected def getSpecificParams: Array[Param[_]] = Array(degree) }