org.apache.spark.ml.recommendation.ALS.Rating Scala Examples
The following examples show how to use org.apache.spark.ml.recommendation.ALS.Rating.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: RatingGenerator.scala From spark-sql-perf with Apache License 2.0 | 5 votes |
package com.databricks.spark.sql.perf.mllib.data import org.apache.spark.ml.recommendation.ALS.Rating import org.apache.spark.mllib.random.RandomDataGenerator import scala.collection.mutable class RatingGenerator( private val numUsers: Int, private val numProducts: Int, private val implicitPrefs: Boolean) extends RandomDataGenerator[Rating[Int]] { private val rng = new java.util.Random() private val observed = new mutable.HashMap[(Int, Int), Boolean]() override def nextValue(): Rating[Int] = { var tuple = (rng.nextInt(numUsers),rng.nextInt(numProducts)) while (observed.getOrElse(tuple,false)){ tuple = (rng.nextInt(numUsers),rng.nextInt(numProducts)) } observed += (tuple -> true) val rating = if (implicitPrefs) rng.nextInt(2)*1.0 else rng.nextDouble()*5 new Rating(tuple._1, tuple._2, rating.toFloat) } override def setSeed(seed: Long) { rng.setSeed(seed) } override def copy(): RatingGenerator = new RatingGenerator(numUsers, numProducts, implicitPrefs) }