org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix Scala Examples
The following examples show how to use org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: T9-4DataTypes.scala From prosparkstreaming with Apache License 2.0 | 5 votes |
package org.apress.prospark import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.mllib.linalg.Matrices import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.linalg.distributed.CoordinateMatrix import org.apache.spark.mllib.linalg.distributed.IndexedRow import org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix import org.apache.spark.mllib.linalg.distributed.MatrixEntry import org.apache.spark.mllib.linalg.distributed.RowMatrix import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.streaming.Seconds import org.apache.spark.streaming.StreamingContext object DataTypesApp { def main(args: Array[String]) { if (args.length != 4) { System.err.println( "Usage: DataTypesApp <appname> <batchInterval> <hostname> <port>") System.exit(1) } val Seq(appName, batchInterval, hostname, port) = args.toSeq val conf = new SparkConf() .setAppName(appName) .setJars(SparkContext.jarOfClass(this.getClass).toSeq) val ssc = new StreamingContext(conf, Seconds(batchInterval.toInt)) val substream = ssc.socketTextStream(hostname, port.toInt) .filter(!_.contains("NaN")) .map(_.split(" ")) .filter(f => f(1) != "0") .map(f => f.map(f => f.toDouble)) val denseV = substream.map(f => Vectors.dense(f.slice(1, 5))) denseV.print() val sparseV = substream.map(f => f.slice(1, 5).toList).map(f => f.zipWithIndex.map { case (s, i) => (i, s) }) .map(f => f.filter(v => v._2 != 0)).map(l => Vectors.sparse(l.size, l)) sparseV.print() val labeledP = substream.map(f => LabeledPoint(f(0), Vectors.dense(f.slice(1, 5)))) labeledP.print() val denseM = substream.map(f => Matrices.dense(3, 16, f.slice(3, 19) ++ f.slice(20, 36) ++ f.slice(37, 53))) denseM.print() denseV.foreachRDD(rdd => { val rowM = new RowMatrix(rdd) println(rowM) }) denseV.foreachRDD(rdd => { val iRdd = rdd.zipWithIndex.map(v => new IndexedRow(v._2, v._1)) val iRowM = new IndexedRowMatrix(iRdd) println(iRowM) }) substream.foreachRDD(rdd => { val entries = rdd.zipWithIndex.flatMap(v => List(3, 20, 37).zipWithIndex.map(i => (i._2.toLong, v._2, v._1.slice(i._1, i._1 + 16).toList))) .map(v => v._3.map(d => new MatrixEntry(v._1, v._2, d))).flatMap(x => x) val cRowM = new CoordinateMatrix(entries) println(cRowM) }) substream.foreachRDD(rdd => { val entries = rdd.zipWithIndex.flatMap(v => List(3, 20, 37).zipWithIndex.map(i => (i._2.toLong, v._2, v._1.slice(i._1, i._1 + 16).toList))) .map(v => v._3.map(d => new MatrixEntry(v._1, v._2, d))).flatMap(x => x) val blockM = new CoordinateMatrix(entries).toBlockMatrix println(blockM) }) ssc.start() ssc.awaitTermination() } }
Example 2
Source File: SparkMatrix.scala From Machine-Learning-with-Spark-Second-Edition with MIT License | 5 votes |
package linalg.matrix import org.apache.spark.ml.linalg.Matrix import org.apache.spark.ml.linalg.Matrices import org.apache.spark.mllib.linalg.distributed.RowMatrix import org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix import org.apache.spark.mllib.linalg.distributed.CoordinateMatrix import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.rdd.RDD import org.apache.spark.mllib.linalg.distributed.IndexedRow import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.mllib.linalg.distributed.MatrixEntry object SparkMatrix { def main(args: Array[String]) { val dMatrix: Matrix = Matrices.dense(2, 2, Array(1.0, 2.0, 3.0, 4.0)) println("dMatrix: \n" + dMatrix) val sMatrixOne: Matrix = Matrices.sparse(3, 2, Array(0, 1, 3), Array(0, 2, 1), Array(5, 6, 7)) println("sMatrixOne: \n" + sMatrixOne) val sMatrixTwo: Matrix = Matrices.sparse(3, 2, Array(0, 1, 3), Array(0, 1, 2), Array(5, 6, 7)) println("sMatrixTwo: \n" + sMatrixTwo) val spConfig = (new SparkConf).setMaster("local").setAppName("SparkApp") val sc = new SparkContext(spConfig) val denseData = Seq( Vectors.dense(0.0, 1.0, 2.1), Vectors.dense(3.0, 2.0, 4.0), Vectors.dense(5.0, 7.0, 8.0), Vectors.dense(9.0, 0.0, 1.1) ) val sparseData = Seq( Vectors.sparse(3, Seq((1, 1.0), (2, 2.1))), Vectors.sparse(3, Seq((0, 3.0), (1, 2.0), (2, 4.0))), Vectors.sparse(3, Seq((0, 5.0), (1, 7.0), (2, 8.0))), Vectors.sparse(3, Seq((0, 9.0), (2, 1.0))) ) val denseMat = new RowMatrix(sc.parallelize(denseData, 2)) val sparseMat = new RowMatrix(sc.parallelize(sparseData, 2)) println("Dense Matrix - Num of Rows :" + denseMat.numRows()) println("Dense Matrix - Num of Cols:" + denseMat.numCols()) println("Sparse Matrix - Num of Rows :" + sparseMat.numRows()) println("Sparse Matrix - Num of Cols:" + sparseMat.numCols()) val data = Seq( (0L, Vectors.dense(0.0, 1.0, 2.0)), (1L, Vectors.dense(3.0, 4.0, 5.0)), (3L, Vectors.dense(9.0, 0.0, 1.0)) ).map(x => IndexedRow(x._1, x._2)) val indexedRows: RDD[IndexedRow] = sc.parallelize(data, 2) val indexedRowsMat = new IndexedRowMatrix(indexedRows) println("Indexed Row Matrix - No of Rows: " + indexedRowsMat.numRows()) println("Indexed Row Matrix - No of Cols: " + indexedRowsMat.numCols()) val entries = sc.parallelize(Seq( (0, 0, 1.0), (0, 1, 2.0), (1, 1, 3.0), (1, 2, 4.0), (2, 2, 5.0), (2, 3, 6.0), (3, 0, 7.0), (3, 3, 8.0), (4, 1, 9.0)), 3).map { case (i, j, value) => MatrixEntry(i, j, value) } val coordinateMat = new CoordinateMatrix(entries) println("Coordinate Matrix - No of Rows: " + coordinateMat.numRows()) println("Coordinate Matrix - No of Cols: " + coordinateMat.numCols()) sc.stop() } }
Example 3
Source File: RichIndexedRowMatrixSuite.scala From hail with MIT License | 5 votes |
package is.hail.utils import breeze.linalg.{DenseMatrix => BDM, _} import is.hail.{HailSuite, TestUtils} import is.hail.linalg.BlockMatrix import is.hail.linalg.BlockMatrix.ops._ import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.linalg.distributed.{DistributedMatrix, IndexedRow, IndexedRowMatrix} import org.apache.spark.rdd.RDD import org.testng.annotations.Test class RichIndexedRowMatrixSuite extends HailSuite { private def convertDistributedMatrixToBreeze(sparkMatrix: DistributedMatrix): Matrix[Double] = { val breezeConverter = sparkMatrix.getClass.getMethod("toBreeze") breezeConverter.invoke(sparkMatrix).asInstanceOf[Matrix[Double]] } @Test def testToBlockMatrixDense() { val nRows = 9L val nCols = 6L val data = Seq( (0L, Vectors.dense(0.0, 1.0, 2.0, 1.0, 3.0, 4.0)), (1L, Vectors.dense(3.0, 4.0, 5.0, 1.0, 1.0, 1.0)), (3L, Vectors.dense(9.0, 0.0, 1.0, 1.0, 1.0, 1.0)), (4L, Vectors.dense(9.0, 0.0, 1.0, 1.0, 1.0, 1.0)), (5L, Vectors.dense(9.0, 0.0, 1.0, 1.0, 1.0, 1.0)), (6L, Vectors.dense(1.0, 2.0, 3.0, 1.0, 1.0, 1.0)), (7L, Vectors.dense(4.0, 5.0, 6.0, 1.0, 1.0, 1.0)), (8L, Vectors.dense(7.0, 8.0, 9.0, 1.0, 1.0, 1.0)) ).map(IndexedRow.tupled) val indexedRows: RDD[IndexedRow] = sc.parallelize(data) val irm = new IndexedRowMatrix(indexedRows) for { blockSize <- Seq(1, 2, 3, 4, 6, 7, 9, 10) } { val blockMat = irm.toHailBlockMatrix(blockSize) assert(blockMat.nRows === nRows) assert(blockMat.nCols === nCols) assert(blockMat.toBreezeMatrix() === convertDistributedMatrixToBreeze(irm)) } intercept[IllegalArgumentException] { irm.toHailBlockMatrix(-1) } intercept[IllegalArgumentException] { irm.toHailBlockMatrix(0) } } @Test def emptyBlocks() { val nRows = 9 val nCols = 2 val data = Seq( (3L, Vectors.dense(1.0, 2.0)), (4L, Vectors.dense(1.0, 2.0)), (5L, Vectors.dense(1.0, 2.0)), (8L, Vectors.dense(1.0, 2.0)) ).map(IndexedRow.tupled) val irm = new IndexedRowMatrix(sc.parallelize(data)) val m = irm.toHailBlockMatrix(2) assert(m.nRows == nRows) assert(m.nCols == nCols) assert(m.toBreezeMatrix() == convertDistributedMatrixToBreeze(irm)) assert(m.blocks.count() == 5) (m.dot(m.T)).toBreezeMatrix() // assert no exception assert(m.mapWithIndex { case (i, j, v) => i + 10 * j + v }.toBreezeMatrix() === new BDM[Double](nRows, nCols, Array[Double]( 0.0, 1.0, 2.0, 4.0, 5.0, 6.0, 6.0, 7.0, 9.0, 10.0, 11.0, 12.0, 15.0, 16.0, 17.0, 16.0, 17.0, 20.0 ))) } }
Example 4
Source File: IndexRowMatrixDemo.scala From spark1.52 with Apache License 2.0 | 5 votes |
package org.apache.spark.examples.mllib import org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix import org.apache.spark.SparkConf import org.apache.spark.mllib.linalg.distributed.RowMatrix import org.apache.spark.SparkContext import org.apache.spark.mllib.linalg.Matrix import org.apache.spark.mllib.linalg.distributed.IndexedRow import org.apache.spark.mllib.linalg.Vectors object IndexRowMatrixDemo { def main(args: Array[String]) { //val sparkConf = new SparkConf().setMast("local[2]").setAppName("SparkHdfsLR") val conf = new SparkConf().setAppName("test").setMaster("local") val sc = new SparkContext(conf) //定义一个隐式转换函数 implicit def double2long(x: Double) = x.toLong //数据中的第一个元素为IndexedRow中的index,剩余的映射到vector //f.take(1)(0)获取到第一个元素并自动进行隐式转换,转换成Long类型 val rdd1 = sc.parallelize( Array( Array(1.0, 2.0, 3.0, 4.0), Array(2.0, 3.0, 4.0, 5.0), Array(3.0, 4.0, 5.0, 6.0))).map(f => IndexedRow(f.take(1)(0), Vectors.dense(f.drop(1)))) //索引行矩阵(IndexedRowMatrix)按行分布式存储,有行索引,其底层支撑结构是索引的行组成的RDD,所以每行可以通过索引(long)和局部向量表示 val indexRowMatrix = new IndexedRowMatrix(rdd1) //计算拉姆矩阵 var gramianMatrix: Matrix = indexRowMatrix.computeGramianMatrix() //转换成行矩阵RowMatrix var rowMatrix: RowMatrix = indexRowMatrix.toRowMatrix() //其它方法例如computeSVD计算奇异值、multiply矩阵相乘等操作,方法使用与RowMaxtrix相同 } }
Example 5
Source File: Main.scala From cosine-lsh-join-spark with MIT License | 5 votes |
package com.soundcloud.lsh import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.linalg.distributed.{IndexedRow, IndexedRowMatrix} import org.apache.spark.storage.StorageLevel import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.SparkContext._ object Main { def main(args: Array[String]) { // init spark context val numPartitions = 8 val input = "data/example.tsv" val conf = new SparkConf() .setAppName("LSH-Cosine") .setMaster("local[4]") val storageLevel = StorageLevel.MEMORY_AND_DISK val sc = new SparkContext(conf) // read in an example data set of word embeddings val data = sc.textFile(input, numPartitions).map { line => val split = line.split(" ") val word = split.head val features = split.tail.map(_.toDouble) (word, features) } // create an unique id for each word by zipping with the RDD index val indexed = data.zipWithIndex.persist(storageLevel) // create indexed row matrix where every row represents one word val rows = indexed.map { case ((word, features), index) => IndexedRow(index, Vectors.dense(features)) } // store index for later re-mapping (index to word) val index = indexed.map { case ((word, features), index) => (index, word) }.persist(storageLevel) // create an input matrix from all rows and run lsh on it val matrix = new IndexedRowMatrix(rows) val lsh = new Lsh( minCosineSimilarity = 0.5, dimensions = 20, numNeighbours = 200, numPermutations = 10, partitions = numPartitions, storageLevel = storageLevel ) val similarityMatrix = lsh.join(matrix) // remap both ids back to words val remapFirst = similarityMatrix.entries.keyBy(_.i).join(index).values val remapSecond = remapFirst.keyBy { case (entry, word1) => entry.j }.join(index).values.map { case ((entry, word1), word2) => (word1, word2, entry.value) } // group by neighbours to get a list of similar words and then take top k val result = remapSecond.groupBy(_._1).map { case (word1, similarWords) => // sort by score desc. and take top 10 entries val similar = similarWords.toSeq.sortBy(-1 * _._3).take(10).map(_._2).mkString(",") s"$word1 --> $similar" } // print out the results for the first 10 words result.take(20).foreach(println) sc.stop() } }
Example 6
Source File: QueryNearestNeighbours.scala From cosine-lsh-join-spark with MIT License | 5 votes |
package com.soundcloud.lsh import org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix, IndexedRow, IndexedRowMatrix, MatrixEntry} class QueryNearestNeighbours( distance: VectorDistance, threshold: Double, queryFraction: Double, catalogFraction: Double ) extends QueryJoiner with Serializable { def join(queryMatrix: IndexedRowMatrix, catalogMatrix: IndexedRowMatrix): CoordinateMatrix = { val sampledQueries = queryMatrix.rows.sample(false, queryFraction) val sampledCatalog = catalogMatrix.rows.sample(false, catalogFraction) val joined = sampledQueries.cartesian(sampledCatalog) val neighbours = joined.map { case ((query: IndexedRow), (catalogEntry: IndexedRow)) => new MatrixEntry(query.index, catalogEntry.index, distance(query.vector, catalogEntry.vector)) }.filter(_.value >= threshold) new CoordinateMatrix(neighbours) } }
Example 7
Source File: NearestNeighbours.scala From cosine-lsh-join-spark with MIT License | 5 votes |
package com.soundcloud.lsh import org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix, IndexedRow, IndexedRowMatrix, MatrixEntry} class NearestNeighbours( distance: VectorDistance, threshold: Double, fraction: Double) extends Joiner with Serializable { def join(inputMatrix: IndexedRowMatrix): CoordinateMatrix = { val rows = inputMatrix.rows val sampledRows = rows.sample(false, fraction) sampledRows.cache() val joined = sampledRows.cartesian(rows) val similarity = joined.map { case ((rowA: IndexedRow), (rowB: IndexedRow)) => ((rowA.index, rowB.index), distance(rowA.vector, rowB.vector)) } val neighbours = similarity.filter { case ((indexA: Long, indexB: Long), similarity) => similarity >= threshold && indexA < indexB // make upper triangular and remove self similarities } val resultRows = neighbours.map { case ((indexA: Long, indexB: Long), similarity) => MatrixEntry(indexA, indexB, similarity) } new CoordinateMatrix(resultRows) } }
Example 8
Source File: QueryHamming.scala From cosine-lsh-join-spark with MIT License | 5 votes |
package com.soundcloud.lsh import org.apache.spark.broadcast.Broadcast import org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix, IndexedRowMatrix, MatrixEntry} import org.apache.spark.rdd.RDD class QueryHamming(minCosineSimilarity: Double, dimensions: Int, resultSize: Int, broadcastCatalog: Boolean = true) extends QueryJoiner with Serializable { override def join(queryMatrix: IndexedRowMatrix, catalogMatrix: IndexedRowMatrix): CoordinateMatrix = { val numFeatures = queryMatrix.numCols().toInt val randomMatrix = localRandomMatrix(dimensions, numFeatures) val querySignatures = matrixToBitSetSparse(queryMatrix, randomMatrix) val catalogSignatures = matrixToBitSetSparse(catalogMatrix, randomMatrix) var rddSignatures: RDD[SparseSignature] = null var broadcastSignatures: Broadcast[Array[SparseSignature]] = null if (broadcastCatalog) { rddSignatures = querySignatures broadcastSignatures = querySignatures.sparkContext.broadcast(catalogSignatures.collect) } else { rddSignatures = catalogSignatures broadcastSignatures = catalogSignatures.sparkContext.broadcast(querySignatures.collect) } val approximated = rddSignatures.mapPartitions { rddSignatureIterator => val signaturesBC = broadcastSignatures.value rddSignatureIterator.flatMap { rddSignature => signaturesBC.map { broadCastSignature => val approximatedCosine = hammingToCosine(hamming(rddSignature.bitSet, broadCastSignature.bitSet), dimensions) if (broadcastCatalog) new MatrixEntry(rddSignature.index, broadCastSignature.index, approximatedCosine) else new MatrixEntry(broadCastSignature.index, rddSignature.index, approximatedCosine) }.filter(_.value >= minCosineSimilarity).sortBy(-_.value).take(resultSize) } } broadcastSignatures.unpersist(true) new CoordinateMatrix(approximated) } }
Example 9
Source File: NearestNeighboursTest.scala From cosine-lsh-join-spark with MIT License | 5 votes |
package com.soundcloud.lsh import org.apache.spark.mllib.linalg.distributed.{IndexedRow, IndexedRowMatrix, MatrixEntry} import org.apache.spark.mllib.linalg.{Vector, Vectors} import org.scalatest.{FunSuite, Matchers} class NearestNeighboursTest extends FunSuite with SparkLocalContext with Matchers { def denseVector(input: Double*): Vector = { Vectors.dense(input.toArray) } test("nearest neighbours cosine") { val vecA = denseVector(1.0, 0.0) val vecB = denseVector(0.0, 1.0) val vecC = denseVector(-1.0, 0.0) val vecD = denseVector(1.0, 0.0) val rows = Seq( IndexedRow(0, vecA), IndexedRow(1, vecB), IndexedRow(2, vecC), IndexedRow(3, vecD) ) val indexedMatrix = new IndexedRowMatrix(sc.parallelize(rows)) val nearestNeighbour = new NearestNeighbours(Cosine, 0.0, 1.0) val got = nearestNeighbour.join(indexedMatrix) val expected = Seq( MatrixEntry(0, 1, 0.0), MatrixEntry(0, 3, 1.0), MatrixEntry(1, 2, 0.0), MatrixEntry(1, 3, 0.0) ) val gotEntries = got.entries.collect().toSeq gotEntries should be(expected) } }
Example 10
Source File: QueryHammingTest.scala From cosine-lsh-join-spark with MIT License | 5 votes |
package com.soundcloud.lsh import com.soundcloud.TestHelper import org.apache.spark.mllib.linalg.distributed.{IndexedRow, IndexedRowMatrix, MatrixEntry} import org.apache.spark.mllib.linalg.{Vector, Vectors} import org.scalatest.{FunSuite, Matchers} class QueryHammingTest extends FunSuite with SparkLocalContext with Matchers with TestHelper { def denseVector(input: Double*): Vector = { Vectors.dense(input.toArray) } val queryVectorA = denseVector(1.0, 1.0) val queryVectorB = denseVector(-1.0, 1.0) val catalogVectorA = denseVector(1.0, 1.0) val catalogVectorB = denseVector(-1.0, 1.0) val catalogVectorC = denseVector(-1.0, 0.5) val catalogVectorD = denseVector(1.0, 0.5) val queryRows = Seq( IndexedRow(0, queryVectorA), IndexedRow(1, queryVectorB) ) val catalogRows = Seq( IndexedRow(0, catalogVectorA), IndexedRow(1, catalogVectorB), IndexedRow(2, catalogVectorC), IndexedRow(3, catalogVectorD) ) val expected = Array( MatrixEntry(0, 0, Cosine(queryVectorA, catalogVectorA)), MatrixEntry(0, 3, Cosine(queryVectorA, catalogVectorD)), MatrixEntry(1, 1, Cosine(queryVectorB, catalogVectorB)), MatrixEntry(1, 2, Cosine(queryVectorB, catalogVectorC)) ) test("broadcast catalog") { val queryMatrix = new IndexedRowMatrix(sc.parallelize(queryRows)) val catalogMatrix = new IndexedRowMatrix(sc.parallelize(catalogRows)) val queryNearestNeighbour = new QueryHamming(0.1, 10000, 2, true) val got = queryNearestNeighbour.join(queryMatrix, catalogMatrix).entries.collect implicit val equality = new MatrixEquality(0.02) got.sortBy(t => (t.i, t.j)) should equal(expected) } test("broadcast query") { val queryMatrix = new IndexedRowMatrix(sc.parallelize(queryRows)) val catalogMatrix = new IndexedRowMatrix(sc.parallelize(catalogRows)) val queryNearestNeighbour = new QueryHamming(0.1, 10000, 2, false) val got = queryNearestNeighbour.join(queryMatrix, catalogMatrix).entries.collect implicit val equality = new MatrixEquality(0.02) got.sortBy(t => (t.i, t.j)) should equal(expected) } }
Example 11
Source File: QueryNearestNeighboursTest.scala From cosine-lsh-join-spark with MIT License | 5 votes |
package com.soundcloud.lsh import org.apache.spark.mllib.linalg.distributed.{IndexedRow, IndexedRowMatrix, MatrixEntry} import org.apache.spark.mllib.linalg.{Vector, Vectors} import org.scalatest.{FunSuite, Matchers} class QueryNearestNeighboursTest extends FunSuite with SparkLocalContext with Matchers { def denseVector(input: Double*): Vector = { Vectors.dense(input.toArray) } test("nearest neighbours cosine") { val queryVectorA = denseVector(1.0, 1.0) val queryVectorB = denseVector(-1.0, 1.0) val catalogVectorA = denseVector(1.0, 1.0) val catalogVectorB = denseVector(-1.0, 1.0) val catalogVectorC = denseVector(-1.0, 0.5) val catalogVectorD = denseVector(1.0, 0.5) val queryRows = Seq( IndexedRow(0, queryVectorA), IndexedRow(1, queryVectorB) ) val catalogRows = Seq( IndexedRow(0, catalogVectorA), IndexedRow(1, catalogVectorB), IndexedRow(2, catalogVectorC), IndexedRow(3, catalogVectorD) ) val queryMatrix = new IndexedRowMatrix(sc.parallelize(queryRows)) val catalogMatrix = new IndexedRowMatrix(sc.parallelize(catalogRows)) val queryNearestNeighbour = new QueryNearestNeighbours(Cosine, 0.4, 1.0, 1.0) val expected = Seq( MatrixEntry(0, 0, Cosine(queryVectorA, catalogVectorA)), MatrixEntry(0, 3, Cosine(queryVectorA, catalogVectorD)), MatrixEntry(1, 1, Cosine(queryVectorB, catalogVectorB)), MatrixEntry(1, 2, Cosine(queryVectorB, catalogVectorC)) ) val got = queryNearestNeighbour.join(queryMatrix, catalogMatrix).entries.collect got should be(expected) } }