org.apache.spark.mllib.tree.impurity.Entropy Scala Examples
The following examples show how to use org.apache.spark.mllib.tree.impurity.Entropy.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: MLLibRandomForest.scala From reforest with Apache License 2.0 | 5 votes |
package reforest.example import org.apache.spark.mllib.tree.RandomForest import org.apache.spark.mllib.tree.configuration.{Algo, QuantileStrategy, Strategy} import org.apache.spark.mllib.tree.impurity.Entropy import org.apache.spark.mllib.util.MLUtils import reforest.rf.feature.RFStrategyFeatureSQRT import reforest.rf.parameter._ import reforest.util.CCUtil import scala.util.Random object MLLibRandomForest { def main(args: Array[String]): Unit = { val property = RFParameterBuilder.apply .addParameter(RFParameterType.Dataset, "data/sample-covtype.libsvm") .addParameter(RFParameterType.NumFeatures, 54) .addParameter(RFParameterType.NumClasses, 10) .addParameter(RFParameterType.NumTrees, 100) .addParameter(RFParameterType.Depth, Array(10)) .addParameter(RFParameterType.BinNumber, Array(8)) .addParameter(RFParameterType.SparkMaster, "local[4]") .addParameter(RFParameterType.SparkCoresMax, 4) .addParameter(RFParameterType.SparkPartition, 4*4) .addParameter(RFParameterType.SparkExecutorMemory, "4096m") .addParameter(RFParameterType.SparkExecutorInstances, 1) .build val sc = CCUtil.getSparkContext(property) sc.setLogLevel("error") val timeStart = System.currentTimeMillis() val data = MLUtils.loadLibSVMFile(sc, property.dataset, property.numFeatures, property.sparkCoresMax * 2) val splits = data.randomSplit(Array(0.6, 0.2, 0.2), 0) val (trainingData, testData) = (splits(0), splits(2)) // Train a RandomForest model. // val categoricalFeaturesInfo = Array.tabulate(200)(i => (i, 5)).toMap val categoricalFeaturesInfo = Map[Int, Int]() val featureSubsetStrategy = "sqrt" val impurity = "entropy" val s = new Strategy(Algo.Classification, Entropy, property.getMaxDepth, property.numClasses, property.getMaxBinNumber, QuantileStrategy.Sort, categoricalFeaturesInfo, 1) val model = RandomForest.trainClassifier(trainingData, s, property.getMaxNumTrees, featureSubsetStrategy, Random.nextInt()) val timeEnd = System.currentTimeMillis() val labelAndPreds = testData.map { point => val prediction = model.predict(point.features) (point.label, prediction) } val testErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / testData.count() println("Time: "+(timeEnd-timeStart)) println("Test Error = " + testErr) if (property.outputTree) { println("Learned classification forest model:\n" + model.toDebugString) } } }
Example 2
Source File: MLLibRandomForestFromFile.scala From reforest with Apache License 2.0 | 5 votes |
package reforest.example import org.apache.spark.mllib.tree.RandomForest import org.apache.spark.mllib.tree.configuration.{Algo, QuantileStrategy, Strategy} import org.apache.spark.mllib.tree.impurity.Entropy import org.apache.spark.mllib.util.MLUtils import reforest.rf.feature.RFStrategyFeatureSQRT import reforest.rf.parameter._ import reforest.util.{CCUtil, CCUtilIO} import scala.util.Random object MLLibRandomForestFromFile { def main(args: Array[String]): Unit = { val property = RFParameterFromFile(args(0)).applyAppName("MLLib") val sc = CCUtil.getSparkContext(property) sc.setLogLevel("error") val timeStart = System.currentTimeMillis() val data = MLUtils.loadLibSVMFile(sc, property.dataset, property.numFeatures, property.sparkCoresMax * 2) val splits = data.randomSplit(Array(0.7, 0.3), 0) val (trainingData, testData) = (splits(0), splits(1)) // Train a RandomForest model. // val categoricalFeaturesInfo = Array.tabulate(200)(i => (i, 5)).toMap val categoricalFeaturesInfo = Map[Int, Int]() val featureSubsetStrategy = "sqrt" val impurity = "entropy" val s = new Strategy(Algo.Classification, Entropy, property.getMaxDepth, property.numClasses, property.getMaxBinNumber, QuantileStrategy.Sort, categoricalFeaturesInfo, 1) val model = RandomForest.trainClassifier(trainingData, s, property.getMaxNumTrees, featureSubsetStrategy, Random.nextInt()) val timeEnd = System.currentTimeMillis() val labelAndPreds = testData.map { point => val prediction = model.predict(point.features) (point.label, prediction) } val testErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / testData.count() CCUtilIO.logACCURACY(property, (1-testErr), (timeEnd-timeStart)) println("Time: "+(timeEnd-timeStart)) println("Test Error = " + testErr) if (property.outputTree) { println("Learned classification forest model:\n" + model.toDebugString) } } }
Example 3
Source File: DecisionTreeExample.scala From spark1.52 with Apache License 2.0 | 5 votes |
package org.apache.spark.examples.mllib import org.apache.spark.mllib.tree.DecisionTree import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.tree.configuration.Algo._ import org.apache.spark.mllib.tree.impurity.Entropy import org.apache.spark.SparkConf import org.apache.spark.SparkContext //加载文件 val data = sc.textFile("../data/mllib/tennis.csv") //解析数据并把它加载到LablePoint val parsedData = data.map {line => val parts = line.split(',').map(_.toDouble) //LabeledPoint标记点是局部向量,向量可以是密集型或者稀疏型,每个向量会关联了一个标签(label) LabeledPoint(parts(0), Vectors.dense(parts.tail)) } //用这些数据训练算法 val model = DecisionTree.train(parsedData, Classification,Entropy, 3) //创建一个向量表示无雨,风大,低温 val v=Vectors.dense(0.0,1.0,0.0) //预测是否打网球 model.predict(v) } }