org.apache.spark.util.Clock Scala Examples
The following examples show how to use org.apache.spark.util.Clock.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: ProcessingTimeExecutorSuite.scala From drizzle-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.streaming import java.util.concurrent.{CountDownLatch, TimeUnit} import org.apache.spark.SparkFunSuite import org.apache.spark.sql.streaming.ProcessingTime import org.apache.spark.util.{Clock, ManualClock, SystemClock} class ProcessingTimeExecutorSuite extends SparkFunSuite { test("nextBatchTime") { val processingTimeExecutor = ProcessingTimeExecutor(ProcessingTime(100)) assert(processingTimeExecutor.nextBatchTime(0) === 100) assert(processingTimeExecutor.nextBatchTime(1) === 100) assert(processingTimeExecutor.nextBatchTime(99) === 100) assert(processingTimeExecutor.nextBatchTime(100) === 200) assert(processingTimeExecutor.nextBatchTime(101) === 200) assert(processingTimeExecutor.nextBatchTime(150) === 200) } test("calling nextBatchTime with the result of a previous call should return the next interval") { val intervalMS = 100 val processingTimeExecutor = ProcessingTimeExecutor(ProcessingTime(intervalMS)) val ITERATION = 10 var nextBatchTime: Long = 0 for (it <- 1 to ITERATION) { nextBatchTime = processingTimeExecutor.nextBatchTime(nextBatchTime) } // nextBatchTime should be 1000 assert(nextBatchTime === intervalMS * ITERATION) } private def testBatchTermination(intervalMs: Long): Unit = { var batchCounts = 0 val processingTimeExecutor = ProcessingTimeExecutor(ProcessingTime(intervalMs)) processingTimeExecutor.execute(() => { batchCounts += 1 // If the batch termination works well, batchCounts should be 3 after `execute` batchCounts < 3 }) assert(batchCounts === 3) } test("batch termination") { testBatchTermination(0) testBatchTermination(10) } test("notifyBatchFallingBehind") { val clock = new ManualClock() @volatile var batchFallingBehindCalled = false val latch = new CountDownLatch(1) val t = new Thread() { override def run(): Unit = { val processingTimeExecutor = new ProcessingTimeExecutor(ProcessingTime(100), clock) { override def notifyBatchFallingBehind(realElapsedTimeMs: Long): Unit = { batchFallingBehindCalled = true } } processingTimeExecutor.execute(() => { latch.countDown() clock.waitTillTime(200) false }) } } t.start() // Wait until the batch is running so that we don't call `advance` too early assert(latch.await(10, TimeUnit.SECONDS), "the batch has not yet started in 10 seconds") clock.advance(200) t.join() assert(batchFallingBehindCalled === true) } }
Example 2
Source File: RecurringTimer.scala From drizzle-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.streaming.util import org.apache.spark.internal.Logging import org.apache.spark.util.{Clock, SystemClock} private[streaming] class RecurringTimer(clock: Clock, period: Long, callback: (Long) => Unit, name: String) extends Logging { private val thread = new Thread("RecurringTimer - " + name) { setDaemon(true) override def run() { loop } } @volatile private var prevTime = -1L @volatile private var nextTime = -1L @volatile private var stopped = false private def loop() { try { while (!stopped) { triggerActionForNextInterval() } triggerActionForNextInterval() } catch { case e: InterruptedException => } } } private[streaming] object RecurringTimer extends Logging { def main(args: Array[String]) { var lastRecurTime = 0L val period = 1000 def onRecur(time: Long) { val currentTime = System.currentTimeMillis() logInfo("" + currentTime + ": " + (currentTime - lastRecurTime)) lastRecurTime = currentTime } val timer = new RecurringTimer(new SystemClock(), period, onRecur, "Test") timer.start() Thread.sleep(30 * 1000) timer.stop(true) } }
Example 3
Source File: MetricsReporter.scala From sparkoscope with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.streaming import java.{util => ju} import scala.collection.mutable import com.codahale.metrics.{Gauge, MetricRegistry} import org.apache.spark.internal.Logging import org.apache.spark.metrics.source.{Source => CodahaleSource} import org.apache.spark.util.Clock class MetricsReporter( stream: StreamExecution, override val sourceName: String) extends CodahaleSource with Logging { override val metricRegistry: MetricRegistry = new MetricRegistry // Metric names should not have . in them, so that all the metrics of a query are identified // together in Ganglia as a single metric group registerGauge("inputRate-total", () => stream.lastProgress.inputRowsPerSecond) registerGauge("processingRate-total", () => stream.lastProgress.inputRowsPerSecond) registerGauge("latency", () => stream.lastProgress.durationMs.get("triggerExecution").longValue()) private def registerGauge[T](name: String, f: () => T)(implicit num: Numeric[T]): Unit = { synchronized { metricRegistry.register(name, new Gauge[T] { override def getValue: T = f() }) } } }
Example 4
Source File: ProcessingTimeExecutorSuite.scala From sparkoscope with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.streaming import java.util.concurrent.{CountDownLatch, TimeUnit} import org.apache.spark.SparkFunSuite import org.apache.spark.sql.streaming.ProcessingTime import org.apache.spark.util.{Clock, ManualClock, SystemClock} class ProcessingTimeExecutorSuite extends SparkFunSuite { test("nextBatchTime") { val processingTimeExecutor = ProcessingTimeExecutor(ProcessingTime(100)) assert(processingTimeExecutor.nextBatchTime(0) === 100) assert(processingTimeExecutor.nextBatchTime(1) === 100) assert(processingTimeExecutor.nextBatchTime(99) === 100) assert(processingTimeExecutor.nextBatchTime(100) === 200) assert(processingTimeExecutor.nextBatchTime(101) === 200) assert(processingTimeExecutor.nextBatchTime(150) === 200) } test("calling nextBatchTime with the result of a previous call should return the next interval") { val intervalMS = 100 val processingTimeExecutor = ProcessingTimeExecutor(ProcessingTime(intervalMS)) val ITERATION = 10 var nextBatchTime: Long = 0 for (it <- 1 to ITERATION) { nextBatchTime = processingTimeExecutor.nextBatchTime(nextBatchTime) } // nextBatchTime should be 1000 assert(nextBatchTime === intervalMS * ITERATION) } private def testBatchTermination(intervalMs: Long): Unit = { var batchCounts = 0 val processingTimeExecutor = ProcessingTimeExecutor(ProcessingTime(intervalMs)) processingTimeExecutor.execute(() => { batchCounts += 1 // If the batch termination works well, batchCounts should be 3 after `execute` batchCounts < 3 }) assert(batchCounts === 3) } test("batch termination") { testBatchTermination(0) testBatchTermination(10) } test("notifyBatchFallingBehind") { val clock = new ManualClock() @volatile var batchFallingBehindCalled = false val latch = new CountDownLatch(1) val t = new Thread() { override def run(): Unit = { val processingTimeExecutor = new ProcessingTimeExecutor(ProcessingTime(100), clock) { override def notifyBatchFallingBehind(realElapsedTimeMs: Long): Unit = { batchFallingBehindCalled = true } } processingTimeExecutor.execute(() => { latch.countDown() clock.waitTillTime(200) false }) } } t.start() // Wait until the batch is running so that we don't call `advance` too early assert(latch.await(10, TimeUnit.SECONDS), "the batch has not yet started in 10 seconds") clock.advance(200) t.join() assert(batchFallingBehindCalled === true) } }
Example 5
Source File: RecurringTimer.scala From sparkoscope with Apache License 2.0 | 5 votes |
package org.apache.spark.streaming.util import org.apache.spark.internal.Logging import org.apache.spark.util.{Clock, SystemClock} private[streaming] class RecurringTimer(clock: Clock, period: Long, callback: (Long) => Unit, name: String) extends Logging { private val thread = new Thread("RecurringTimer - " + name) { setDaemon(true) override def run() { loop } } @volatile private var prevTime = -1L @volatile private var nextTime = -1L @volatile private var stopped = false private def loop() { try { while (!stopped) { triggerActionForNextInterval() } triggerActionForNextInterval() } catch { case e: InterruptedException => } } } private[streaming] object RecurringTimer extends Logging { def main(args: Array[String]) { var lastRecurTime = 0L val period = 1000 def onRecur(time: Long) { val currentTime = System.currentTimeMillis() logInfo("" + currentTime + ": " + (currentTime - lastRecurTime)) lastRecurTime = currentTime } val timer = new RecurringTimer(new SystemClock(), period, onRecur, "Test") timer.start() Thread.sleep(30 * 1000) timer.stop(true) } }
Example 6
Source File: MetricsReporter.scala From multi-tenancy-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.streaming import java.{util => ju} import scala.collection.mutable import com.codahale.metrics.{Gauge, MetricRegistry} import org.apache.spark.internal.Logging import org.apache.spark.metrics.source.{Source => CodahaleSource} import org.apache.spark.util.Clock class MetricsReporter( stream: StreamExecution, override val sourceName: String) extends CodahaleSource with Logging { override val metricRegistry: MetricRegistry = new MetricRegistry // Metric names should not have . in them, so that all the metrics of a query are identified // together in Ganglia as a single metric group registerGauge("inputRate-total", () => stream.lastProgress.inputRowsPerSecond) registerGauge("processingRate-total", () => stream.lastProgress.inputRowsPerSecond) registerGauge("latency", () => stream.lastProgress.durationMs.get("triggerExecution").longValue()) private def registerGauge[T](name: String, f: () => T)(implicit num: Numeric[T]): Unit = { synchronized { metricRegistry.register(name, new Gauge[T] { override def getValue: T = f() }) } } }
Example 7
Source File: ProcessingTimeExecutorSuite.scala From multi-tenancy-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.streaming import java.util.concurrent.{CountDownLatch, TimeUnit} import org.apache.spark.SparkFunSuite import org.apache.spark.sql.streaming.ProcessingTime import org.apache.spark.util.{Clock, ManualClock, SystemClock} class ProcessingTimeExecutorSuite extends SparkFunSuite { test("nextBatchTime") { val processingTimeExecutor = ProcessingTimeExecutor(ProcessingTime(100)) assert(processingTimeExecutor.nextBatchTime(0) === 100) assert(processingTimeExecutor.nextBatchTime(1) === 100) assert(processingTimeExecutor.nextBatchTime(99) === 100) assert(processingTimeExecutor.nextBatchTime(100) === 200) assert(processingTimeExecutor.nextBatchTime(101) === 200) assert(processingTimeExecutor.nextBatchTime(150) === 200) } test("calling nextBatchTime with the result of a previous call should return the next interval") { val intervalMS = 100 val processingTimeExecutor = ProcessingTimeExecutor(ProcessingTime(intervalMS)) val ITERATION = 10 var nextBatchTime: Long = 0 for (it <- 1 to ITERATION) { nextBatchTime = processingTimeExecutor.nextBatchTime(nextBatchTime) } // nextBatchTime should be 1000 assert(nextBatchTime === intervalMS * ITERATION) } private def testBatchTermination(intervalMs: Long): Unit = { var batchCounts = 0 val processingTimeExecutor = ProcessingTimeExecutor(ProcessingTime(intervalMs)) processingTimeExecutor.execute(() => { batchCounts += 1 // If the batch termination works well, batchCounts should be 3 after `execute` batchCounts < 3 }) assert(batchCounts === 3) } test("batch termination") { testBatchTermination(0) testBatchTermination(10) } test("notifyBatchFallingBehind") { val clock = new ManualClock() @volatile var batchFallingBehindCalled = false val latch = new CountDownLatch(1) val t = new Thread() { override def run(): Unit = { val processingTimeExecutor = new ProcessingTimeExecutor(ProcessingTime(100), clock) { override def notifyBatchFallingBehind(realElapsedTimeMs: Long): Unit = { batchFallingBehindCalled = true } } processingTimeExecutor.execute(() => { latch.countDown() clock.waitTillTime(200) false }) } } t.start() // Wait until the batch is running so that we don't call `advance` too early assert(latch.await(10, TimeUnit.SECONDS), "the batch has not yet started in 10 seconds") clock.advance(200) t.join() assert(batchFallingBehindCalled === true) } }
Example 8
Source File: RecurringTimer.scala From multi-tenancy-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.streaming.util import org.apache.spark.internal.Logging import org.apache.spark.util.{Clock, SystemClock} private[streaming] class RecurringTimer(clock: Clock, period: Long, callback: (Long) => Unit, name: String) extends Logging { private val thread = new Thread("RecurringTimer - " + name) { setDaemon(true) override def run() { loop } } @volatile private var prevTime = -1L @volatile private var nextTime = -1L @volatile private var stopped = false private def loop() { try { while (!stopped) { triggerActionForNextInterval() } triggerActionForNextInterval() } catch { case e: InterruptedException => } } } private[streaming] object RecurringTimer extends Logging { def main(args: Array[String]) { var lastRecurTime = 0L val period = 1000 def onRecur(time: Long) { val currentTime = System.currentTimeMillis() logInfo("" + currentTime + ": " + (currentTime - lastRecurTime)) lastRecurTime = currentTime } val timer = new RecurringTimer(new SystemClock(), period, onRecur, "Test") timer.start() Thread.sleep(30 * 1000) timer.stop(true) } }
Example 9
Source File: RecurringTimer.scala From iolap with Apache License 2.0 | 5 votes |
package org.apache.spark.streaming.util import org.apache.spark.Logging import org.apache.spark.util.{Clock, SystemClock} private[streaming] class RecurringTimer(clock: Clock, period: Long, callback: (Long) => Unit, name: String) extends Logging { private val thread = new Thread("RecurringTimer - " + name) { setDaemon(true) override def run() { loop } } @volatile private var prevTime = -1L @volatile private var nextTime = -1L @volatile private var stopped = false private def loop() { try { while (!stopped) { clock.waitTillTime(nextTime) callback(nextTime) prevTime = nextTime nextTime += period logDebug("Callback for " + name + " called at time " + prevTime) } } catch { case e: InterruptedException => } } } private[streaming] object RecurringTimer { def main(args: Array[String]) { var lastRecurTime = 0L val period = 1000 def onRecur(time: Long) { val currentTime = System.currentTimeMillis() println("" + currentTime + ": " + (currentTime - lastRecurTime)) lastRecurTime = currentTime } val timer = new RecurringTimer(new SystemClock(), period, onRecur, "Test") timer.start() Thread.sleep(30 * 1000) timer.stop(true) } }
Example 10
Source File: RecurringTimer.scala From spark1.52 with Apache License 2.0 | 5 votes |
package org.apache.spark.streaming.util import org.apache.spark.Logging import org.apache.spark.util.{Clock, SystemClock} private[streaming] class RecurringTimer(clock: Clock, period: Long, callback: (Long) => Unit, name: String) extends Logging { private val thread = new Thread("RecurringTimer - " + name) { setDaemon(true) override def run() { loop } } @volatile private var prevTime = -1L @volatile private var nextTime = -1L @volatile private var stopped = false private def loop() { try { while (!stopped) { triggerActionForNextInterval() } triggerActionForNextInterval() } catch { case e: InterruptedException => } } } private[streaming] object RecurringTimer extends Logging { def main(args: Array[String]) { var lastRecurTime = 0L val period = 1000 def onRecur(time: Long) { val currentTime = System.currentTimeMillis() logInfo("" + currentTime + ": " + (currentTime - lastRecurTime)) lastRecurTime = currentTime } val timer = new RecurringTimer(new SystemClock(), period, onRecur, "Test") timer.start() Thread.sleep(30 * 1000) timer.stop(true) } }
Example 11
Source File: DriverServiceBootstrapStep.scala From Spark-2.3.1 with Apache License 2.0 | 5 votes |
package org.apache.spark.deploy.k8s.submit.steps import scala.collection.JavaConverters._ import io.fabric8.kubernetes.api.model.ServiceBuilder import org.apache.spark.SparkConf import org.apache.spark.deploy.k8s.Config._ import org.apache.spark.deploy.k8s.Constants._ import org.apache.spark.deploy.k8s.submit.KubernetesDriverSpec import org.apache.spark.internal.Logging import org.apache.spark.util.Clock private[spark] class DriverServiceBootstrapStep( resourceNamePrefix: String, driverLabels: Map[String, String], sparkConf: SparkConf, clock: Clock) extends DriverConfigurationStep with Logging { import DriverServiceBootstrapStep._ override def configureDriver(driverSpec: KubernetesDriverSpec): KubernetesDriverSpec = { require(sparkConf.getOption(DRIVER_BIND_ADDRESS_KEY).isEmpty, s"$DRIVER_BIND_ADDRESS_KEY is not supported in Kubernetes mode, as the driver's bind " + "address is managed and set to the driver pod's IP address.") require(sparkConf.getOption(DRIVER_HOST_KEY).isEmpty, s"$DRIVER_HOST_KEY is not supported in Kubernetes mode, as the driver's hostname will be " + "managed via a Kubernetes service.") val preferredServiceName = s"$resourceNamePrefix$DRIVER_SVC_POSTFIX" val resolvedServiceName = if (preferredServiceName.length <= MAX_SERVICE_NAME_LENGTH) { preferredServiceName } else { val randomServiceId = clock.getTimeMillis() val shorterServiceName = s"spark-$randomServiceId$DRIVER_SVC_POSTFIX" logWarning(s"Driver's hostname would preferably be $preferredServiceName, but this is " + s"too long (must be <= $MAX_SERVICE_NAME_LENGTH characters). Falling back to use " + s"$shorterServiceName as the driver service's name.") shorterServiceName } val driverPort = sparkConf.getInt("spark.driver.port", DEFAULT_DRIVER_PORT) val driverBlockManagerPort = sparkConf.getInt( org.apache.spark.internal.config.DRIVER_BLOCK_MANAGER_PORT.key, DEFAULT_BLOCKMANAGER_PORT) val driverService = new ServiceBuilder() .withNewMetadata() .withName(resolvedServiceName) .endMetadata() .withNewSpec() .withClusterIP("None") .withSelector(driverLabels.asJava) .addNewPort() .withName(DRIVER_PORT_NAME) .withPort(driverPort) .withNewTargetPort(driverPort) .endPort() .addNewPort() .withName(BLOCK_MANAGER_PORT_NAME) .withPort(driverBlockManagerPort) .withNewTargetPort(driverBlockManagerPort) .endPort() .endSpec() .build() val namespace = sparkConf.get(KUBERNETES_NAMESPACE) val driverHostname = s"${driverService.getMetadata.getName}.$namespace.svc" val resolvedSparkConf = driverSpec.driverSparkConf.clone() .set(DRIVER_HOST_KEY, driverHostname) .set("spark.driver.port", driverPort.toString) .set( org.apache.spark.internal.config.DRIVER_BLOCK_MANAGER_PORT, driverBlockManagerPort) driverSpec.copy( driverSparkConf = resolvedSparkConf, otherKubernetesResources = driverSpec.otherKubernetesResources ++ Seq(driverService)) } } private[spark] object DriverServiceBootstrapStep { val DRIVER_BIND_ADDRESS_KEY = org.apache.spark.internal.config.DRIVER_BIND_ADDRESS.key val DRIVER_HOST_KEY = org.apache.spark.internal.config.DRIVER_HOST_ADDRESS.key val DRIVER_SVC_POSTFIX = "-driver-svc" val MAX_SERVICE_NAME_LENGTH = 63 }
Example 12
Source File: RecurringTimer.scala From Spark-2.3.1 with Apache License 2.0 | 5 votes |
package org.apache.spark.streaming.util import org.apache.spark.internal.Logging import org.apache.spark.util.{Clock, SystemClock} private[streaming] class RecurringTimer(clock: Clock, period: Long, callback: (Long) => Unit, name: String) extends Logging { private val thread = new Thread("RecurringTimer - " + name) { setDaemon(true) override def run() { loop } } @volatile private var prevTime = -1L @volatile private var nextTime = -1L @volatile private var stopped = false private def loop() { try { while (!stopped) { triggerActionForNextInterval() } triggerActionForNextInterval() } catch { case e: InterruptedException => } } } private[streaming] object RecurringTimer extends Logging { def main(args: Array[String]) { var lastRecurTime = 0L val period = 1000 def onRecur(time: Long) { val currentTime = System.currentTimeMillis() logInfo("" + currentTime + ": " + (currentTime - lastRecurTime)) lastRecurTime = currentTime } val timer = new RecurringTimer(new SystemClock(), period, onRecur, "Test") timer.start() Thread.sleep(30 * 1000) timer.stop(true) } }
Example 13
Source File: RecurringTimer.scala From BigDatalog with Apache License 2.0 | 5 votes |
package org.apache.spark.streaming.util import org.apache.spark.Logging import org.apache.spark.util.{Clock, SystemClock} private[streaming] class RecurringTimer(clock: Clock, period: Long, callback: (Long) => Unit, name: String) extends Logging { private val thread = new Thread("RecurringTimer - " + name) { setDaemon(true) override def run() { loop } } @volatile private var prevTime = -1L @volatile private var nextTime = -1L @volatile private var stopped = false private def loop() { try { while (!stopped) { triggerActionForNextInterval() } triggerActionForNextInterval() } catch { case e: InterruptedException => } } } private[streaming] object RecurringTimer extends Logging { def main(args: Array[String]) { var lastRecurTime = 0L val period = 1000 def onRecur(time: Long) { val currentTime = System.currentTimeMillis() logInfo("" + currentTime + ": " + (currentTime - lastRecurTime)) lastRecurTime = currentTime } val timer = new RecurringTimer(new SystemClock(), period, onRecur, "Test") timer.start() Thread.sleep(30 * 1000) timer.stop(true) } }
Example 14
Source File: RecurringTimer.scala From spark-sql-server with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.server.util import org.apache.spark.internal.Logging import org.apache.spark.util.Clock private[server] class RecurringTimer(clock: Clock, period: Long, callback: (Long) => Unit, name: String) extends Logging { private val thread = new Thread("RecurringTimer - " + name) { setDaemon(true) override def run() { loop } } @volatile private var prevTime = -1L @volatile private var nextTime = -1L @volatile private var stopped = false private def loop() { try { while (!stopped) { triggerActionForNextInterval() } triggerActionForNextInterval() } catch { case e: InterruptedException => } } }