java.lang.Boolean Scala Examples
The following examples show how to use java.lang.Boolean.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: JacksonScalaProvider.scala From daf-semantics with Apache License 2.0 | 5 votes |
package it.almawave.kb.http.providers import com.fasterxml.jackson.jaxrs.json.JacksonJaxbJsonProvider import com.fasterxml.jackson.databind.ObjectMapper import javax.ws.rs.ext.Provider import javax.ws.rs.Produces import com.fasterxml.jackson.module.scala.DefaultScalaModule import javax.ws.rs.core.MediaType import com.fasterxml.jackson.annotation.JsonInclude import com.fasterxml.jackson.annotation.JsonAnyGetter import com.fasterxml.jackson.databind.SerializationFeature import com.fasterxml.jackson.databind.DeserializationFeature import javax.ws.rs.ext.ContextResolver import com.fasterxml.jackson.databind.JsonSerializer import com.fasterxml.jackson.core.JsonGenerator import com.fasterxml.jackson.databind.SerializerProvider import java.lang.Double import java.lang.Boolean @Provider @Produces(Array(MediaType.APPLICATION_JSON)) class JacksonScalaProvider extends JacksonJaxbJsonProvider with ContextResolver[ObjectMapper] { println("\n\nregistered " + this.getClass) val mapper = new ObjectMapper() mapper .registerModule(DefaultScalaModule) .setSerializationInclusion(JsonInclude.Include.ALWAYS) .configure(SerializationFeature.INDENT_OUTPUT, true) .configure(SerializationFeature.WRITE_DATES_AS_TIMESTAMPS, true) .configure(SerializationFeature.WRITE_NULL_MAP_VALUES, true) .configure(SerializationFeature.WRITE_SINGLE_ELEM_ARRAYS_UNWRAPPED, true) .configure(SerializationFeature.WRITE_EMPTY_JSON_ARRAYS, true) .configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false) .configure(DeserializationFeature.ACCEPT_EMPTY_ARRAY_AS_NULL_OBJECT, true) .configure(DeserializationFeature.ACCEPT_EMPTY_STRING_AS_NULL_OBJECT, true) .configure(DeserializationFeature.ACCEPT_SINGLE_VALUE_AS_ARRAY, true) // .setVisibility(JsonMethod.FIELD, Visibility.ANY); .getSerializerProvider.setNullValueSerializer(new JsonSerializer[Object] { def serialize(obj: Object, gen: JsonGenerator, provider: SerializerProvider) { obj match { case bool: Boolean => gen.writeBoolean(false) case number: Integer => gen.writeNumber(0) case number: Double => gen.writeNumber(0.0D) case text: String => gen.writeString("") case _ => gen.writeString("") } } }) super.setMapper(mapper) override def getContext(klasses: Class[_]): ObjectMapper = mapper }
Example 2
Source File: LocalLogisticRegressionModel.scala From spark-ml-serving with Apache License 2.0 | 5 votes |
package io.hydrosphere.spark_ml_serving.classification import java.lang.Boolean import io.hydrosphere.spark_ml_serving.TypedTransformerConverter import io.hydrosphere.spark_ml_serving.common._ import io.hydrosphere.spark_ml_serving.common.classification.LocalProbabilisticClassificationModel import io.hydrosphere.spark_ml_serving.common.utils.DataUtils import org.apache.spark.ml.classification.LogisticRegressionModel import org.apache.spark.ml.linalg.{Matrix, SparseMatrix, Vector, Vectors} class LocalLogisticRegressionModel(override val sparkTransformer: LogisticRegressionModel) extends LocalProbabilisticClassificationModel[LogisticRegressionModel] {} object LocalLogisticRegressionModel extends SimpleModelLoader[LogisticRegressionModel] with TypedTransformerConverter[LogisticRegressionModel] { override def build(metadata: Metadata, data: LocalData): LogisticRegressionModel = { val constructor = classOf[LogisticRegressionModel].getDeclaredConstructor( classOf[String], classOf[Matrix], classOf[Vector], classOf[Int], java.lang.Boolean.TYPE ) constructor.setAccessible(true) val coefficientMatrixParams = data.column("coefficientMatrix").get.data.head.asInstanceOf[Map[String, Any]] val coefficientMatrix = DataUtils.constructMatrix(coefficientMatrixParams) val interceptVectorParams = data.column("interceptVector").get.data.head.asInstanceOf[Map[String, Any]] val interceptVector = DataUtils.constructVector(interceptVectorParams) constructor .newInstance( metadata.uid, coefficientMatrix, interceptVector, data.column("numFeatures").get.data.head.asInstanceOf[java.lang.Integer], data.column("isMultinomial").get.data.head.asInstanceOf[java.lang.Boolean] ) .setFeaturesCol(metadata.paramMap("featuresCol").asInstanceOf[String]) .setPredictionCol(metadata.paramMap("predictionCol").asInstanceOf[String]) .setProbabilityCol(metadata.paramMap("probabilityCol").asInstanceOf[String]) .setRawPredictionCol(metadata.paramMap("rawPredictionCol").asInstanceOf[String]) .setThreshold(metadata.paramMap("threshold").asInstanceOf[Double]) } override implicit def toLocal( transformer: LogisticRegressionModel ): LocalTransformer[LogisticRegressionModel] = new LocalLogisticRegressionModel(transformer) }
Example 3
Source File: Node.scala From HANAVora-Extensions with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.types import java.lang.Boolean @SQLUserDefinedType(udt = classOf[NodeType]) case class Node(path: Seq[Any], pathDataTypeJson: String, var preRank: java.lang.Integer = null, var postRank: java.lang.Integer = null, isLeaf: java.lang.Boolean = null, var ordPath: Seq[Long] = null) { lazy val effectivePath: Seq[Any] = path.reverse.dropWhile(_ == null).reverse def compareToRecursive(left: Seq[Long], right: Seq[Long]): Int = { (left.isEmpty, right.isEmpty) match { case (true, true) => 0 // both are equal case (true, false) => -1 // left is smaller than right case (false, true) => 1 // right is smaller than right case (false, false) => if (left.head == right.head) { compareToRecursive(left.tail, right.tail) } else { left.head.compareTo(right.head) } } } def compareTo(that: Node): Int = compareToRecursive(ordPath, that.ordPath) protected def this() = this(null, null) if (path != null && path.isEmpty) { throw new IllegalStateException("A Node cannot contain an empty path") } } case object Node { def apply(path: Seq[Any], pathDataType: DataType, preRank: Integer, postRank: Integer, isLeaf: Boolean, ordPath: Seq[Long]): Node = Node(path, if (pathDataType == null) null else pathDataType.json, preRank, postRank, isLeaf, ordPath) def apply(path: Seq[Any], pathDataType: DataType, preRank: Integer, postRank: Integer, isLeaf: Boolean): Node = Node(path, if (pathDataType == null) null else pathDataType.json, preRank, postRank, isLeaf) def apply(path: Seq[Any], pathDataType: DataType, ordPath: Seq[Long]): Node = Node(path, if (pathDataType == null) null else pathDataType.json, ordPath = ordPath) def apply(path: Seq[Any], pathDataType: DataType): Node = Node(path, if (pathDataType == null) null else pathDataType.json) }
Example 4
Source File: UnicomplexActorPublisher.scala From squbs with Apache License 2.0 | 5 votes |
package org.squbs.stream import java.lang.Boolean import akka.actor.{ActorRef, ActorSystem, Props} import akka.stream.actor.{ActorPublisher, ActorPublisherMessage} import akka.stream.javadsl import akka.stream.scaladsl.Source import org.squbs.stream.TriggerEvent._ import org.squbs.unicomplex.{Active, Stopping, _} final class UnicomplexActorPublisher extends ActorPublisher[LifecycleState] { override def receive = { case ActorPublisherMessage.Request(_) => Unicomplex() ! SystemState Unicomplex() ! ObtainLifecycleEvents() case ActorPublisherMessage.Cancel | ActorPublisherMessage.SubscriptionTimeoutExceeded => context.stop(self) case SystemState => Unicomplex() ! SystemState case element: LifecycleState if demand_? => onNext(element) } private def demand_? : Boolean = totalDemand > 0 } case class LifecycleManaged[T, M]() { val trigger = Source.actorPublisher[LifecycleState](Props.create(classOf[UnicomplexActorPublisher])) .collect { case Active => ENABLE case Stopping => DISABLE } val source = (in: Source[T, M]) => new Trigger(eagerComplete = true).source(in, trigger) // for Java def source(in: javadsl.Source[T, M]): javadsl.Source[T, akka.japi.Pair[M, ActorRef]] = source(in.asScala) .mapMaterializedValue { case (m1, m2) => akka.japi.Pair(m1, m2) }.asJava }
Example 5
Source File: ConnectMongoConverterSpec.scala From kafka-connect-mongodb with Apache License 2.0 | 5 votes |
package com.startapp.data import java.lang.Boolean import java.util import org.apache.kafka.connect.data.{Schema, SchemaBuilder, Struct} import org.scalatest.{FlatSpec, Matchers} class ConnectMongoConverterSpec extends FlatSpec with Matchers{ private val FIELD1_NAME = "fieldInt" private val FIELD1_VALUE = new Integer(5) private val FIELD2_NAME = "fieldString" private val FIELD2_VALUE = "str" private val FIELD3_NAME = "fieldBoolean" private val FIELD3_VALUE = new Boolean(true) val schema = SchemaBuilder.struct().name("test schema") .field(FIELD1_NAME, Schema.INT32_SCHEMA) .field(FIELD2_NAME, Schema.STRING_SCHEMA) .field(FIELD3_NAME, Schema.BOOLEAN_SCHEMA) .build() "No Schema Connect Mongo Converter Bad Data" should "throw an exception" in { var exceptionThrown = false val badData = new Struct(schema) try{ checkJsonMap(NoSchemaConnectMongoConverter, badData) } catch { case _ : java.lang.ClassCastException => exceptionThrown = true } exceptionThrown should be(true) } "No Schema Connect Mongo Converter Good Data" should "return the same map" in { val jsonMap = new util.HashMap[String, Object]() jsonMap.put(FIELD1_NAME, FIELD1_VALUE) jsonMap.put(FIELD2_NAME, FIELD2_VALUE) jsonMap.put(FIELD3_NAME, FIELD3_VALUE) checkJsonMap(NoSchemaConnectMongoConverter, jsonMap) } "Schema Connect Mongo Converter Bad Data" should "throw an exception" in { var exceptionThrown = false val badData = new util.HashMap[String, Object]() badData.put(FIELD1_NAME, FIELD1_VALUE) try { checkJsonMap(SchemaConnectMongoConverter, badData) } catch { case _ : java.lang.ClassCastException => exceptionThrown = true } exceptionThrown should be(true) } "Schema Connect Mongo Converter Good Data" should "convert data to json map" in { val data = new Struct(schema) .put(FIELD1_NAME, FIELD1_VALUE) .put(FIELD2_NAME, FIELD2_VALUE) .put(FIELD3_NAME, FIELD3_VALUE) checkJsonMap(SchemaConnectMongoConverter, data) } private def checkJsonMap(converter : ConnectMongoConverter, value: Object): Unit ={ val newJsonMap = converter.toJsonMap(value).toMap newJsonMap(FIELD1_NAME) should be(FIELD1_VALUE) newJsonMap(FIELD2_NAME) should be(FIELD2_VALUE) newJsonMap(FIELD3_NAME) should be(FIELD3_VALUE) } }