java.util.HashMap Scala Examples
The following examples show how to use java.util.HashMap.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: SchematicBreedingReactor.scala From Electrodynamics with GNU Lesser General Public License v3.0 | 5 votes |
package com.calclavia.edx.quantum.schematic import java.util.HashMap import com.calclavia.edx.electrical.ElectricalContent import com.calclavia.edx.quantum.QuantumContent import ElectricalContent import QuantumContent import net.minecraft.block.Block import net.minecraft.init.Blocks import net.minecraftforge.common.util.ForgeDirection import resonantengine.lib.collection.Pair import resonantengine.lib.schematic.Schematic import resonantengine.lib.transform.vector.Vector3 class SchematicBreedingReactor extends Schematic { override def getName: String = { return "schematic.breedingReactor.name" } override def getStructure(dir: ForgeDirection, size: Int): HashMap[Vector3, Pair[Block, Integer]] = { val returnMap: HashMap[Vector3, Pair[Block, Integer]] = new HashMap[Vector3, Pair[Block, Integer]] var r: Int = Math.max(size, 2) for (x <- -r to r) { for (z <- -r to r) { returnMap.put(new Vector3(x, 0, z), new Pair[Block, Integer](Blocks.water, 0)) } } r -= 1 for (x <- -r to r) { for (z <- -r to r) { val targetPosition: Vector3 = new Vector3(x, 1, z) if (new Vector3(x, 0, z).magnitude <= 2) { if (!((x == -r || x == r) && (z == -r || z == r))) { returnMap.put(new Vector3(x, 0, z), new Pair[Block, Integer](QuantumContent.blockReactorCell, 0)) returnMap.put(new Vector3(x, -3, z), new Pair[Block, Integer](ElectricalContent.blockSiren, 0)) returnMap.put(new Vector3(x, -2, z), new Pair[Block, Integer](Blocks.redstone_wire, 0)) } else { returnMap.put(new Vector3(x, -1, z), new Pair[Block, Integer](QuantumContent.blockControlRod, 0)) returnMap.put(new Vector3(x, -2, z), new Pair[Block, Integer](Blocks.piston, 1)) } } } } returnMap.put(new Vector3(0, -2, 0), new Pair[Block, Integer](Blocks.stone, 0)) returnMap.put(new Vector3(0, -3, 0), new Pair[Block, Integer](Blocks.stone, 0)) returnMap.put(new Vector3, new Pair[Block, Integer](QuantumContent.blockReactorCell, 0)) return returnMap } }
Example 2
Source File: RddToDataFrame.scala From spark-sframe with BSD 2-Clause "Simplified" License | 5 votes |
package org.apache.spark.turi import org.graphlab.create.GraphLabUtil import org.apache.spark.sql.{SQLContext, Row, DataFrame} import org.apache.spark.rdd.RDD import scala.collection.JavaConversions._ import org.apache.spark.sql.types._ import scala.collection.mutable.ListBuffer import scala.collection.mutable.ArrayBuffer import scala.collection.immutable.Map import java.util.HashMap import java.util.ArrayList import java.util.{Date,GregorianCalendar} import java.sql.Date object EvaluateRDD { def inferSchema(obj: Any): DataType = { if(obj.isInstanceOf[Int]) { IntegerType } else if(obj.isInstanceOf[String]) { StringType } else if(obj.isInstanceOf[Double]) { DoubleType } else if(obj.isInstanceOf[Long]) { LongType } else if(obj.isInstanceOf[Float]) { FloatType } else if(obj.isInstanceOf[Map[_,_]]) { MapType(inferSchema(obj.asInstanceOf[Map[_,_]].head._1),inferSchema(obj.asInstanceOf[Map[_,_]].head._2)) } else if(obj.isInstanceOf[java.util.HashMap[_,_]]) { MapType(inferSchema(obj.asInstanceOf[java.util.HashMap[_,_]].head._1),inferSchema(obj.asInstanceOf[java.util.HashMap[_,_]].head._2)) } else if(obj.isInstanceOf[Array[_]]) { ArrayType(inferSchema(obj.asInstanceOf[Array[_]](0))) } else if(obj.isInstanceOf[java.util.ArrayList[_]]) { ArrayType(inferSchema(obj.asInstanceOf[java.util.ArrayList[_]](0))) } else if(obj.isInstanceOf[java.util.GregorianCalendar]) { TimestampType } else if(obj.isInstanceOf[java.util.Date] || obj.isInstanceOf[java.sql.Date]) { DateType } else { StringType } } def toScala(obj: Any): Any = { if (obj.isInstanceOf[java.util.HashMap[_,_]]) { val jmap = obj.asInstanceOf[java.util.HashMap[_,_]] jmap.map { case (k,v) => toScala(k) -> toScala(v) }.toMap } else if(obj.isInstanceOf[java.util.ArrayList[_]]) { val buf = ArrayBuffer[Any]() val jArray = obj.asInstanceOf[java.util.ArrayList[_]] for(item <- jArray) { buf += toScala(item) } buf.toArray } else if(obj.isInstanceOf[java.util.GregorianCalendar]) { new java.sql.Timestamp(obj.asInstanceOf[java.util.GregorianCalendar].getTime().getTime()) } else { obj } } def toSparkDataFrame(sqlContext: SQLContext, rdd: RDD[java.util.HashMap[String,_]]): DataFrame = { val scalaRDD = rdd.map(l => toScala(l)) val rowRDD = scalaRDD.map(l => Row.fromSeq(l.asInstanceOf[Map[_,_]].values.toList)) var sample_data: java.util.HashMap[String,_] = rdd.take(1)(0) var schema_list: ListBuffer[StructField] = new ListBuffer[StructField]() for ((name,v) <- sample_data) { schema_list.append(StructField(name,inferSchema(v))) } sqlContext.createDataFrame(rowRDD,StructType(schema_list)) } }
Example 3
Source File: TestUtils.scala From shc with Apache License 2.0 | 5 votes |
package org.apache.spark.sql import java.nio.ByteBuffer import java.util.{ArrayList, HashMap} import scala.util.Random object TestUtils { def generateRandomByteBuffer(rand: Random, size: Int): ByteBuffer = { val bb = ByteBuffer.allocate(size) val arrayOfBytes = new Array[Byte](size) rand.nextBytes(arrayOfBytes) bb.put(arrayOfBytes) } def generateRandomMap(rand: Random, size: Int): java.util.Map[String, Int] = { val jMap = new HashMap[String, Int]() for (i <- 0 until size) { jMap.put(rand.nextString(5), i) } jMap } def generateRandomArray(rand: Random, size: Int): ArrayList[Boolean] = { val vec = new ArrayList[Boolean]() for (i <- 0 until size) { vec.add(rand.nextBoolean()) } vec } }
Example 4
Source File: GraphUtil.scala From lms-clean with BSD 3-Clause "New" or "Revised" License | 5 votes |
package lms.util import java.util.{ArrayDeque, HashMap} object GraphUtil { class Ref[T](init: T) { var value: T = init } def stronglyConnectedComponents[T](start: List[T], succ: T=>List[T]): List[List[T]] = { val id: Ref[Int] = new Ref(0) val stack = new ArrayDeque[T] val mark = new HashMap[T,Int] val res = new Ref[List[List[T]]](Nil) for (node <- start) visit(node,succ,id,stack,mark,res) res.value } def visit[T](node: T, succ: T=>List[T], id: Ref[Int], stack: ArrayDeque[T], mark: HashMap[T,Int], res: Ref[List[List[T]]]): Int = { if (mark.containsKey(node)) mark.get(node) else { id.value = id.value + 1 mark.put(node, id.value) stack.addFirst(node) // println("push " + node) var min: Int = id.value for (child <- succ(node)) { val m = visit(child, succ, id, stack, mark, res) if (m < min) min = m } if (min == mark.get(node)) { var scc: List[T] = Nil var loop: Boolean = true do { val element = stack.removeFirst() // println("appending " + element) scc ::= element mark.put(element, Integer.MAX_VALUE) loop = element != node } while (loop) res.value ::= scc } min } } }
Example 5
Source File: AnyVals.scala From sigmastate-interpreter with MIT License | 5 votes |
package scalan import java.util.HashMap class AVHashMap[K,V](val hashMap: HashMap[K,V]) extends AnyVal { @inline final def isEmpty: Boolean = hashMap.isEmpty @inline final def get(key: K): Nullable[V] = Nullable(hashMap.get(key)) @inline final def apply(key: K): V = hashMap.get(key) @inline final def containsKey(key: K): Boolean = hashMap.containsKey(key) @inline final def put(key: K, value: V): V = hashMap.put(key, value) @inline final def clear(): Unit = { hashMap.clear() } final def getOrElseUpdate(key: K, op: => V): V = { var v = hashMap.get(key) if (v == null) { v = op hashMap.put(key, v) } v } @inline final def keySet: java.util.Set[K] = hashMap.keySet() } object AVHashMap { def apply[K,V](initialCapacity: Int) = new AVHashMap[K,V](new HashMap[K,V](initialCapacity)) }
Example 6
Source File: HogEvent.scala From hogzilla with GNU General Public License v2.0 | 5 votes |
package org.hogzilla.event import java.util.HashMap import java.util.Map import org.apache.hadoop.hbase.client.Put import org.apache.hadoop.hbase.util.Bytes import org.hogzilla.hbase.HogHBaseRDD import org.hogzilla.util.HogFlow import java.net.InetAddress class HogEvent(flow:HogFlow) { var sensorid:Int=0 var signature_id:Double=0 var priorityid:Int=0 var text:String="" var data:Map[String,String]=new HashMap() var ports:String="" var title:String="" var username:String="" var coords:String="" def formatIPtoBytes(ip:String):Array[Byte] = { try { // Eca! Snorby doesn't support IPv6 yet. See https://github.com/Snorby/snorby/issues/65 if(ip.contains(":")) InetAddress.getByName("255.255.6.6").getAddress else InetAddress.getByName(ip).getAddress } catch { case t: Throwable => // Bogus address! InetAddress.getByName("255.255.1.1").getAddress } } def alert() { val put = new Put(Bytes.toBytes(flow.get("flow:id"))) put.add(Bytes.toBytes("event"), Bytes.toBytes("note"), Bytes.toBytes(text)) put.add(Bytes.toBytes("event"), Bytes.toBytes("lower_ip"), formatIPtoBytes(flow.lower_ip)) put.add(Bytes.toBytes("event"), Bytes.toBytes("upper_ip"), formatIPtoBytes(flow.upper_ip)) put.add(Bytes.toBytes("event"), Bytes.toBytes("lower_ip_str"), Bytes.toBytes(flow.lower_ip)) put.add(Bytes.toBytes("event"), Bytes.toBytes("upper_ip_str"), Bytes.toBytes(flow.upper_ip)) put.add(Bytes.toBytes("event"), Bytes.toBytes("signature_id"), Bytes.toBytes("%.0f".format(signature_id))) put.add(Bytes.toBytes("event"), Bytes.toBytes("time"), Bytes.toBytes(System.currentTimeMillis)) put.add(Bytes.toBytes("event"), Bytes.toBytes("ports"), Bytes.toBytes(ports)) put.add(Bytes.toBytes("event"), Bytes.toBytes("title"), Bytes.toBytes(title)) if(!username.equals("")) put.add(Bytes.toBytes("event"), Bytes.toBytes("username"), Bytes.toBytes(username)) if(!coords.equals("")) put.add(Bytes.toBytes("event"), Bytes.toBytes("coords"), Bytes.toBytes(coords)) HogHBaseRDD.hogzilla_events.put(put) //println(f"ALERT: $text%100s\n\n@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@") } }
Example 7
Source File: KafkaWordCount.scala From BigDatalog with Apache License 2.0 | 5 votes |
// scalastyle:off println package org.apache.spark.examples.streaming import java.util.HashMap import org.apache.kafka.clients.producer.{ProducerConfig, KafkaProducer, ProducerRecord} import org.apache.spark.streaming._ import org.apache.spark.streaming.kafka._ import org.apache.spark.SparkConf object KafkaWordCount { def main(args: Array[String]) { if (args.length < 4) { System.err.println("Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>") System.exit(1) } StreamingExamples.setStreamingLogLevels() val Array(zkQuorum, group, topics, numThreads) = args val sparkConf = new SparkConf().setAppName("KafkaWordCount") val ssc = new StreamingContext(sparkConf, Seconds(2)) ssc.checkpoint("checkpoint") val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2) val words = lines.flatMap(_.split(" ")) val wordCounts = words.map(x => (x, 1L)) .reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(2), 2) wordCounts.print() ssc.start() ssc.awaitTermination() } } // Produces some random words between 1 and 100. object KafkaWordCountProducer { def main(args: Array[String]) { if (args.length < 4) { System.err.println("Usage: KafkaWordCountProducer <metadataBrokerList> <topic> " + "<messagesPerSec> <wordsPerMessage>") System.exit(1) } val Array(brokers, topic, messagesPerSec, wordsPerMessage) = args // Zookeeper connection properties val props = new HashMap[String, Object]() props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers) props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer") props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer") val producer = new KafkaProducer[String, String](props) // Send some messages while(true) { (1 to messagesPerSec.toInt).foreach { messageNum => val str = (1 to wordsPerMessage.toInt).map(x => scala.util.Random.nextInt(10).toString) .mkString(" ") val message = new ProducerRecord[String, String](topic, null, str) producer.send(message) } Thread.sleep(1000) } } } // scalastyle:on println
Example 8
Source File: KafkaWordCount.scala From spark1.52 with Apache License 2.0 | 5 votes |
// scalastyle:off println package org.apache.spark.examples.streaming import java.util.HashMap import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord} import org.apache.spark.SparkConf import org.apache.spark.streaming._ import org.apache.spark.streaming.kafka.KafkaUtils StreamingExamples.setStreamingLogLevels() val Array(zkQuorum, group, topics, numThreads) = Array("localhost:2181","","topic1,topic2,topic3,topic4","1")//args val sparkConf = new SparkConf().setAppName("KafkaWordCount").setMaster("local") val ssc = new StreamingContext(sparkConf, Seconds(2)) ssc.checkpoint("checkpoint") val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2) val words = lines.flatMap(_.split(" ")) val wordCounts = words.map(x => (x, 1L)) .reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(2), 2) wordCounts.print() ssc.start() ssc.awaitTermination() } } // Produces some random words between 1 and 100. // object KafkaWordCountProducer { def main(args: Array[String]) { if (args.length < 4) { System.err.println("Usage: KafkaWordCountProducer <metadataBrokerList> <topic> " + "<messagesPerSec> <wordsPerMessage>") System.exit(1) } val Array(brokers, topic, messagesPerSec, wordsPerMessage) = args // Zookeeper connection properties val props = new HashMap[String, Object]() props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers) props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer") props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer") val producer = new KafkaProducer[String, String](props) // Send some messages while(true) { (1 to messagesPerSec.toInt).foreach { messageNum => val str = (1 to wordsPerMessage.toInt).map(x => scala.util.Random.nextInt(10).toString) .mkString(" ") val message = new ProducerRecord[String, String](topic, null, str) producer.send(message) } Thread.sleep(1000) } } } // scalastyle:on println
Example 9
Source File: KafkaWordCount.scala From iolap with Apache License 2.0 | 5 votes |
package org.apache.spark.examples.streaming import java.util.HashMap import org.apache.kafka.clients.producer.{ProducerConfig, KafkaProducer, ProducerRecord} import org.apache.spark.streaming._ import org.apache.spark.streaming.kafka._ import org.apache.spark.SparkConf object KafkaWordCount { def main(args: Array[String]) { if (args.length < 4) { System.err.println("Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>") System.exit(1) } StreamingExamples.setStreamingLogLevels() val Array(zkQuorum, group, topics, numThreads) = args val sparkConf = new SparkConf().setAppName("KafkaWordCount") val ssc = new StreamingContext(sparkConf, Seconds(2)) ssc.checkpoint("checkpoint") val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2) val words = lines.flatMap(_.split(" ")) val wordCounts = words.map(x => (x, 1L)) .reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(2), 2) wordCounts.print() ssc.start() ssc.awaitTermination() } } // Produces some random words between 1 and 100. object KafkaWordCountProducer { def main(args: Array[String]) { if (args.length < 4) { System.err.println("Usage: KafkaWordCountProducer <metadataBrokerList> <topic> " + "<messagesPerSec> <wordsPerMessage>") System.exit(1) } val Array(brokers, topic, messagesPerSec, wordsPerMessage) = args // Zookeeper connection properties val props = new HashMap[String, Object]() props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers) props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer") props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer") val producer = new KafkaProducer[String, String](props) // Send some messages while(true) { (1 to messagesPerSec.toInt).foreach { messageNum => val str = (1 to wordsPerMessage.toInt).map(x => scala.util.Random.nextInt(10).toString) .mkString(" ") val message = new ProducerRecord[String, String](topic, null, str) producer.send(message) } Thread.sleep(1000) } } }
Example 10
Source File: KafkaWordCount.scala From multi-tenancy-spark with Apache License 2.0 | 5 votes |
// scalastyle:off println package org.apache.spark.examples.streaming import java.util.HashMap import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord} import org.apache.spark.SparkConf import org.apache.spark.streaming._ import org.apache.spark.streaming.kafka._ object KafkaWordCount { def main(args: Array[String]) { if (args.length < 4) { System.err.println("Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>") System.exit(1) } StreamingExamples.setStreamingLogLevels() val Array(zkQuorum, group, topics, numThreads) = args val sparkConf = new SparkConf().setAppName("KafkaWordCount") val ssc = new StreamingContext(sparkConf, Seconds(2)) ssc.checkpoint("checkpoint") val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2) val words = lines.flatMap(_.split(" ")) val wordCounts = words.map(x => (x, 1L)) .reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(2), 2) wordCounts.print() ssc.start() ssc.awaitTermination() } } // Produces some random words between 1 and 100. object KafkaWordCountProducer { def main(args: Array[String]) { if (args.length < 4) { System.err.println("Usage: KafkaWordCountProducer <metadataBrokerList> <topic> " + "<messagesPerSec> <wordsPerMessage>") System.exit(1) } val Array(brokers, topic, messagesPerSec, wordsPerMessage) = args // Zookeeper connection properties val props = new HashMap[String, Object]() props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers) props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer") props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer") val producer = new KafkaProducer[String, String](props) // Send some messages while(true) { (1 to messagesPerSec.toInt).foreach { messageNum => val str = (1 to wordsPerMessage.toInt).map(x => scala.util.Random.nextInt(10).toString) .mkString(" ") val message = new ProducerRecord[String, String](topic, null, str) producer.send(message) } Thread.sleep(1000) } } } // scalastyle:on println
Example 11
Source File: KafkaWordCount.scala From sparkoscope with Apache License 2.0 | 5 votes |
// scalastyle:off println package org.apache.spark.examples.streaming import java.util.HashMap import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord} import org.apache.spark.SparkConf import org.apache.spark.streaming._ import org.apache.spark.streaming.kafka._ object KafkaWordCount { def main(args: Array[String]) { if (args.length < 4) { System.err.println("Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>") System.exit(1) } StreamingExamples.setStreamingLogLevels() val Array(zkQuorum, group, topics, numThreads) = args val sparkConf = new SparkConf().setAppName("KafkaWordCount") val ssc = new StreamingContext(sparkConf, Seconds(2)) ssc.checkpoint("checkpoint") val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2) val words = lines.flatMap(_.split(" ")) val wordCounts = words.map(x => (x, 1L)) .reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(2), 2) wordCounts.print() ssc.start() ssc.awaitTermination() } } // Produces some random words between 1 and 100. object KafkaWordCountProducer { def main(args: Array[String]) { if (args.length < 4) { System.err.println("Usage: KafkaWordCountProducer <metadataBrokerList> <topic> " + "<messagesPerSec> <wordsPerMessage>") System.exit(1) } val Array(brokers, topic, messagesPerSec, wordsPerMessage) = args // Zookeeper connection properties val props = new HashMap[String, Object]() props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers) props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer") props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer") val producer = new KafkaProducer[String, String](props) // Send some messages while(true) { (1 to messagesPerSec.toInt).foreach { messageNum => val str = (1 to wordsPerMessage.toInt).map(x => scala.util.Random.nextInt(10).toString) .mkString(" ") val message = new ProducerRecord[String, String](topic, null, str) producer.send(message) } Thread.sleep(1000) } } } // scalastyle:on println
Example 12
Source File: KafkaWordCount.scala From drizzle-spark with Apache License 2.0 | 5 votes |
// scalastyle:off println package org.apache.spark.examples.streaming import java.util.HashMap import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord} import org.apache.spark.SparkConf import org.apache.spark.streaming._ import org.apache.spark.streaming.kafka._ object KafkaWordCount { def main(args: Array[String]) { if (args.length < 4) { System.err.println("Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>") System.exit(1) } StreamingExamples.setStreamingLogLevels() val Array(zkQuorum, group, topics, numThreads) = args val sparkConf = new SparkConf().setAppName("KafkaWordCount") val ssc = new StreamingContext(sparkConf, Seconds(2)) ssc.checkpoint("checkpoint") val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2) val words = lines.flatMap(_.split(" ")) val wordCounts = words.map(x => (x, 1L)) .reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(2), 2) wordCounts.print() ssc.start() ssc.awaitTermination() } } // Produces some random words between 1 and 100. object KafkaWordCountProducer { def main(args: Array[String]) { if (args.length < 4) { System.err.println("Usage: KafkaWordCountProducer <metadataBrokerList> <topic> " + "<messagesPerSec> <wordsPerMessage>") System.exit(1) } val Array(brokers, topic, messagesPerSec, wordsPerMessage) = args // Zookeeper connection properties val props = new HashMap[String, Object]() props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers) props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer") props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer") val producer = new KafkaProducer[String, String](props) // Send some messages while(true) { (1 to messagesPerSec.toInt).foreach { messageNum => val str = (1 to wordsPerMessage.toInt).map(x => scala.util.Random.nextInt(10).toString) .mkString(" ") val message = new ProducerRecord[String, String](topic, null, str) producer.send(message) } Thread.sleep(1000) } } } // scalastyle:on println
Example 13
Source File: SchematicFusionReactor.scala From Electrodynamics with GNU Lesser General Public License v3.0 | 5 votes |
package com.calclavia.edx.quantum.schematic import java.util.HashMap import com.calclavia.edx.quantum.QuantumContent import net.minecraft.block.Block import net.minecraft.init.Blocks import net.minecraftforge.common.util.ForgeDirection import resonantengine.lib.collection.Pair import resonantengine.lib.schematic.Schematic import resonantengine.lib.transform.vector.Vector3 class SchematicFusionReactor extends Schematic { override def getName: String = { return "schematic.fusionReactor.name" } def getStructure(dir: ForgeDirection, size: Int): HashMap[Vector3, Pair[Block, Integer]] = { val returnMap: HashMap[Vector3, Pair[Block, Integer]] = new HashMap[Vector3, Pair[Block, Integer]] val r: Int = size + 2 for (y <- 0 to size; x <- -r to r; z <- -r to r) { val position: Vector3 = new Vector3(x, y, z) val magnitude: Double = Math.sqrt(x * x + z * z) if (!returnMap.containsKey(position)) { returnMap.put(position, new Pair[Block, Integer](Blocks.air, 0)) } if (magnitude <= r) { if (y == 0 || y == size) { if (magnitude >= 1) { val yDeviation: Double = (if (y == 0) size / 3 else -size / 3) + (if (y == 0) -1 else 1) * Math.sin(magnitude / r * Math.PI) * size / 2d val newPos: Vector3 = position.clone.add(0, yDeviation, 0) returnMap.put(newPos.round, new Pair[Block, Integer](QuantumContent.blockElectromagnet, 1)) } } else if (magnitude > r - 1) { returnMap.put(position, new Pair[Block, Integer](QuantumContent.blockElectromagnet, 0)) } } } for (y <- 0 to size) { returnMap.put(new Vector3(0, y, 0), new Pair[Block, Integer](QuantumContent.blockReactorCell, 0)) returnMap.put(new Vector3(1, y, 0), new Pair[Block, Integer](QuantumContent.blockElectromagnet, 0)) returnMap.put(new Vector3(0, y, 1), new Pair[Block, Integer](QuantumContent.blockElectromagnet, 0)) returnMap.put(new Vector3(0, y, -1), new Pair[Block, Integer](QuantumContent.blockElectromagnet, 0)) returnMap.put(new Vector3(-1, y, 0), new Pair[Block, Integer](QuantumContent.blockElectromagnet, 0)) } returnMap.put(new Vector3(0, 0, 0), new Pair[Block, Integer](QuantumContent.blockReactorCell, 0)) return returnMap } }
Example 14
Source File: SchematicAccelerator.scala From Electrodynamics with GNU Lesser General Public License v3.0 | 5 votes |
package com.calclavia.edx.quantum.schematic import java.util.HashMap import com.calclavia.edx.quantum.QuantumContent import QuantumContent import net.minecraft.block.Block import net.minecraft.init.Blocks import net.minecraftforge.common.util.ForgeDirection import resonantengine.lib.collection.Pair import resonantengine.lib.schematic.Schematic import resonantengine.lib.transform.vector.Vector3 class SchematicAccelerator extends Schematic { override def getName: String = { return "schematic.accelerator.name" } def getStructure(dir: ForgeDirection, size: Int): HashMap[Vector3, Pair[Block, Integer]] = { val returnMap: HashMap[Vector3, Pair[Block, Integer]] = new HashMap[Vector3, Pair[Block, Integer]] //Bottom returnMap.putAll(getBox(new Vector3(0, 0, 0), QuantumContent.blockElectromagnet, 1, size)) returnMap.putAll(getBox(new Vector3(0, 0, 0), QuantumContent.blockElectromagnet, 0, size - 1)) returnMap.putAll(getBox(new Vector3(0, 0, 0), QuantumContent.blockElectromagnet, 0, size + 1)) //Mid returnMap.putAll(getBox(new Vector3(0, 1, 0), Blocks.air, 0, size)) returnMap.putAll(getBox(new Vector3(0, 1, 0), QuantumContent.blockElectromagnet, 1, size - 1)) returnMap.putAll(getBox(new Vector3(0, 1, 0), QuantumContent.blockElectromagnet, 1, size + 1)) //Top returnMap.putAll(getBox(new Vector3(0, 2, 0), QuantumContent.blockElectromagnet, 1, size)) returnMap.putAll(getBox(new Vector3(0, 2, 0), QuantumContent.blockElectromagnet, 0, size - 1)) returnMap.putAll(getBox(new Vector3(0, 2, 0), QuantumContent.blockElectromagnet, 0, size + 1)) return returnMap } }
Example 15
Source File: SchematicFissionReactor.scala From Electrodynamics with GNU Lesser General Public License v3.0 | 5 votes |
package com.calclavia.edx.quantum.schematic import java.util.HashMap import com.calclavia.edx.electrical.ElectricalContent import ElectricalContent import com.calclavia.edx.quantum.QuantumContent import net.minecraft.block.Block import net.minecraft.init.Blocks import net.minecraftforge.common.util.ForgeDirection import resonantengine.lib.collection.Pair import resonantengine.lib.schematic.Schematic import resonantengine.lib.transform.vector.Vector3 class SchematicFissionReactor extends Schematic { override def getName: String = { return "schematic.fissionReactor.name" } def getStructure(dir: ForgeDirection, size: Int): HashMap[Vector3, Pair[Block, Integer]] = { val returnMap: HashMap[Vector3, Pair[Block, Integer]] = new HashMap[Vector3, Pair[Block, Integer]] if (size <= 1) { var r: Int = 2 for (x <- -r to r; z <- -r to r) { val targetPosition: Vector3 = new Vector3(x, 0, z) returnMap.put(targetPosition, new Pair[Block, Integer](Blocks.water, 0)) } r -= 1 for (x <- -r to r; z <- -r to r) { val targetPosition: Vector3 = new Vector3(x, 1, z) returnMap.put(targetPosition, new Pair[Block, Integer](Block.getBlockFromName("electricTurbine"), 0)) if (!((x == -r || x == r) && (z == -r || z == r)) && new Vector3(x, 0, z).magnitude <= 1) { returnMap.put(new Vector3(x, -1, z), new Pair[Block, Integer](QuantumContent.blockControlRod, 0)) returnMap.put(new Vector3(x, -2, z), new Pair[Block, Integer](Blocks.sticky_piston, 1)) } } returnMap.put(new Vector3(0, -3, 0), new Pair[Block, Integer](ElectricalContent.blockSiren, 0)) returnMap.put(new Vector3(0, -2, 0), new Pair[Block, Integer](Blocks.redstone_wire, 0)) returnMap.put(new Vector3, new Pair[Block, Integer](QuantumContent.blockReactorCell, 0)) } else { val r: Int = 2 for (y <- 0 to size; x <- -r to r; z <- -r to r) { val targetPosition: Vector3 = new Vector3(x, y, z) val leveledPosition: Vector3 = new Vector3(0, y, 0) if (y < size - 1) { if (targetPosition.distance(leveledPosition) == 2) { returnMap.put(targetPosition, new Pair[Block, Integer](QuantumContent.blockControlRod, 0)) var rotationMetadata: Int = 0 val offset: Vector3 = new Vector3(x, 0, z).normalize for (checkDir <- ForgeDirection.VALID_DIRECTIONS) { if (offset.x == checkDir.offsetX && offset.y == checkDir.offsetY && offset.z == checkDir.offsetZ) { rotationMetadata = checkDir.getOpposite.ordinal } } returnMap.put(targetPosition + offset, new Pair[Block, Integer](Blocks.sticky_piston, rotationMetadata)) } else if (x == -r || x == r || z == -r || z == r) { returnMap.put(targetPosition, new Pair[Block, Integer](Blocks.glass, 0)) } else if (x == 0 && z == 0) { returnMap.put(targetPosition, new Pair[Block, Integer](QuantumContent.blockReactorCell, 0)) } else { returnMap.put(targetPosition, new Pair[Block, Integer](Blocks.water, 0)) } } else if (targetPosition.distance(leveledPosition) < 2) { returnMap.put(targetPosition, new Pair[Block, Integer](Block.getBlockFromName("electricTurbine"), 0)) } } } return returnMap } }
Example 16
Source File: TSDBUpdater.scala From sprue with Apache License 2.0 | 5 votes |
package com.cloudera.sprue import java.io._ import org.apache.commons._ import org.apache.http._ import org.apache.http.client._ import org.apache.http.client.methods.HttpPost import java.util.ArrayList import org.apache.http.client.entity.UrlEncodedFormEntity import com.google.gson.Gson import java.util.HashMap import java.lang.reflect.Type import com.google.gson.reflect.TypeToken import org.apache.http.entity.StringEntity import org.apache.http.impl.client.DefaultHttpClient import org.apache.spark.sql.Row case class MetricsTags(state: String) case class OpenTSDBMessageElement(metric: String, timestamp: Long, value: Long, tags: MetricsTags) object TSDBUpdater { val client = new DefaultHttpClient() // val client = HttpClientBuilder.create.build } class TSDBUpdater (url : String) extends Serializable { def loadPatientStats (row : Row) { val metricList = new ArrayList[OpenTSDBMessageElement]() val jmap = new MetricsTags(row.getString(0)) val evalTimestamp = row.getLong(1) val sirsMetric = new OpenTSDBMessageElement("sirs", evalTimestamp, row.getLong(2), jmap) metricList.add(sirsMetric) val sepsisMetric = new OpenTSDBMessageElement("sepsis", evalTimestamp, row.getLong(3), jmap) metricList.add(sepsisMetric) val severeSepsisMetric = new OpenTSDBMessageElement("severeSepsis", evalTimestamp, row.getLong(4), jmap) metricList.add(severeSepsisMetric) val septicShockMetric = new OpenTSDBMessageElement("septicShock", evalTimestamp, row.getLong(5), jmap) metricList.add(septicShockMetric) val organMetric = new OpenTSDBMessageElement("organDysfunctionSyndrome", evalTimestamp, row.getLong(6), jmap) metricList.add(organMetric) val metricsAsJson = new Gson().toJson(metricList) val post = new HttpPost(url) post.setHeader("Content-type", "application/json"); post.setEntity(new StringEntity(metricsAsJson)); val response = TSDBUpdater.client.execute(post) // println("response =====" + response.toString()) } }
Example 17
Source File: DictEncodingEncoders.scala From filo with Apache License 2.0 | 5 votes |
package org.velvia.filo.codecs import com.google.flatbuffers.FlatBufferBuilder import java.nio.ByteBuffer import java.util.HashMap import scala.collection.mutable.{ArrayBuffer, BitSet} import scala.language.postfixOps import scalaxy.loops._ import org.velvia.filo._ import org.velvia.filo.vector._ object DictEncodingEncoders extends ThreadLocalBuffers { import Utils._ var count = 0 // Note: This is a way to avoid storing null and dealing with NPEs for NA values val NaString = "" def toStringVector(data: Seq[String], naMask: BitSet, stringSet: collection.Set[String]): ByteBuffer = { import DictStringVector._ count += 1 val builder = AutoIntegralDVBuilders.IntDataVectBuilder // Convert the set of strings to an encoding val uniques = stringSet.toSeq // NOTE: sorry but java's HashMap is just much faster (for the next step) // This used to be `uniques.zipWithIndex.toMap` val strToCode = new HashMap[String, Int]() for { i <- 0 until uniques.length optimized } { strToCode.put(uniques(i), i) } // Encode each string to the code per the map above // Again we could have used data.zipWithIndex.map(....) but this is much faster. val codes = ArrayBuffer.fill(data.length)(0) for { i <- 0 until data.length optimized } { if (!naMask(i)) codes(i) = strToCode.get(data(i)) + 1 } val fbb = new FlatBufferBuilder(getBuffer) val ((dataOffset, nbits), signed) = builder.build(fbb, codes, 0, stringSet.size + 1) val dictVect = stringVect(fbb, Seq(NaString) ++ uniques) startDictStringVector(fbb) addDictionary(fbb, dictVect) addLen(fbb, data.length) addCodes(fbb, dataOffset) addInfo(fbb, DataInfo.createDataInfo(fbb, nbits, signed)) finishDictStringVectorBuffer(fbb, endDictStringVector(fbb)) putHeaderAndGet(fbb, WireFormat.VECTORTYPE_DICT, WireFormat.SUBTYPE_STRING) } }
Example 18
Source File: Schema.scala From circe-json-schema with Apache License 2.0 | 5 votes |
package io.circe.schema import cats.data.{ Validated, ValidatedNel } import io.circe.{ Json, JsonNumber, JsonObject } import java.util.HashMap import org.everit.json.schema.{ Schema => EveritSchema, ValidationException } import org.everit.json.schema.loader.SchemaLoader import org.json.{ JSONArray, JSONObject, JSONTokener } import scala.util.Try trait Schema { def validate(value: Json): ValidatedNel[ValidationError, Unit] } object Schema { def load(value: Json): Schema = new EveritSchemaImpl( SchemaLoader.builder().schemaJson(fromCirce(value)).draftV7Support().build().load().build() ) def loadFromString(value: String): Try[Schema] = Try( new EveritSchemaImpl( SchemaLoader.builder().schemaJson(new JSONTokener(value).nextValue).draftV7Support().build().load().build() ) ) private[this] class EveritSchemaImpl(schema: EveritSchema) extends Schema { def validate(value: Json): ValidatedNel[ValidationError, Unit] = try { schema.validate(fromCirce(value)) Validated.valid(()) } catch { case e: ValidationException => Validated.invalid(ValidationError.fromEverit(e)) } } private[this] val fromCirceVisitor: Json.Folder[Object] = new Json.Folder[Object] { def onNull: Object = JSONObject.NULL def onBoolean(value: Boolean): Object = Predef.boolean2Boolean(value) def onString(value: String): Object = value def onNumber(value: JsonNumber): Object = value.toInt match { case Some(asInt) => Predef.int2Integer(asInt) case None => new JSONTokener(value.toString).nextValue } def onArray(value: Vector[Json]): Object = new JSONArray(value.map(_.foldWith(this)).toArray) def onObject(value: JsonObject): Object = { val map = new HashMap[String, Object](value.size) val iter = value.toIterable.iterator while (iter.hasNext) { val (k, v) = iter.next map.put(k, v.foldWith(this)) } new JSONObject(map) } } private[this] def fromCirce(value: Json): Object = value.foldWith(fromCirceVisitor) }
Example 19
Source File: AllowRule.scala From Hive-JDBC-Proxy with Apache License 2.0 | 5 votes |
package com.enjoyyin.hive.proxy.jdbc.rule import com.enjoyyin.hive.proxy.jdbc.thrift.ProxySession import com.enjoyyin.hive.proxy.jdbc.domain.User import com.enjoyyin.hive.proxy.jdbc.thrift.EventInfo import com.enjoyyin.hive.proxy.jdbc.domain.UserHQL import com.enjoyyin.hive.proxy.jdbc.domain.ThriftServerName import com.enjoyyin.hive.proxy.jdbc.util.ProxyConf import java.util.HashMap import scala.collection.JavaConversions._ import scala.collection.mutable.HashSet import com.enjoyyin.hive.proxy.jdbc.rule.basic.DefaultThriftServerNameRule import com.enjoyyin.hive.proxy.jdbc.util.Logging import com.enjoyyin.hive.proxy.jdbc.domain.HQLPriority import com.enjoyyin.hive.proxy.jdbc.rule.basic.BalancerInfo override def dealOrNot(params: Map[String, String]): ThriftServerName def canDeal(params: Map[String, String]): Boolean } object ThriftServerNameRule extends Logging{ val THRIFT_CONNECTION_NAME = ProxyConf.THRIFT_CONNECTION_NAME val USERNAME_NAME = "username" val IPADDRESS_NAME = "ipAddress" type JMap[K, V] = java.util.Map[K, V] private val registeredRules: HashSet[ThriftServerNameRule] = HashSet[ThriftServerNameRule]() private def toParamsMap(conf: JMap[String, String], username: String, ipAddress: String): Map[String, String] = { var params = conf if(conf == null) { params = new HashMap[String, String] } params += USERNAME_NAME -> username params += IPADDRESS_NAME -> ipAddress params.toMap } private def register(ruleName: String): Unit = { val ruleClass = Class.forName(ruleName).newInstance.asInstanceOf[ThriftServerNameRule] registeredRules.synchronized(registeredRules += ruleClass) logInfo("Registered a thrift-server-name-rule " + ruleName) } def register(ruleNames: Array[String]): Unit = { if(ruleNames.isEmpty) return registeredRules.synchronized { registeredRules.clear ruleNames.foreach(register) } } def getThriftServerName(conf: JMap[String, String], username: String, ipAddress: String): ThriftServerName = { val params = toParamsMap(conf, username, ipAddress) var rule = registeredRules.synchronized(registeredRules.find(_.canDeal(params))) if(rule.isEmpty) { rule = Some(DefaultThriftServerNameRule) } rule.get.dealOrNot(params) } }
Example 20
Source File: MemoryContextStore.scala From dbpedia-spotlight-model with Apache License 2.0 | 5 votes |
package org.dbpedia.spotlight.db.memory import java.util.{HashMap, Map} import com.esotericsoftware.kryo.io.{Input, Output} import com.esotericsoftware.kryo.{Kryo, KryoException, KryoSerializable} import org.apache.commons.lang.NotImplementedException import org.dbpedia.spotlight.db.model.{ContextStore, TokenTypeStore} import org.dbpedia.spotlight.model.{DBpediaResource, TokenType} def calculateTotalTokenCounts(){ var i = 0 while(i < counts.size){ if (counts(i).isInstanceOf[Array[Short]]){ var j = 0 while(j < counts(i).size ){ totalTokenCounts(i) += qc(counts(i)(j)) j += 1 } } i += 1 } } def read(kryo: Kryo, input: Input) { val size = input.readInt() tokens = new Array[Array[Int]](size) counts = new Array[Array[Short]](size) totalTokenCounts = new Array[Int](size) var i = 0 var j = 0 while(i < size) { val subsize = input.readInt() if (subsize > 0) { tokens(i) = new Array[Int](subsize) counts(i) = new Array[Short](subsize) j = 0 while(j < subsize) { tokens(i)(j) = input.readInt() j += 1 } j = 0 while(j < subsize) { counts(i)(j) = input.readShort() j += 1 } } i += 1 } if(input.readChar() != '#') throw new KryoException("Error in deserializing context store...") } }
Example 21
Source File: DefaultWriteDataMapper.scala From spark-riak-connector with Apache License 2.0 | 5 votes |
package com.basho.riak.spark.writer.mapper import com.basho.riak.spark._ import com.basho.riak.spark.rdd.BucketDef import com.basho.riak.spark.writer.{ WriteDataMapper, WriteDataMapperFactory } import java.util.HashMap class DefaultWriteDataMapper[T](bucketDef: BucketDef) extends WriteDataMapper[T, KeyValue] { override def mapValue(value: T): KeyValue = { // scalastyle:off null value match { // HashMap and Array are used for processing objects comming from python // TODO: Move to specific data mappers like in com.basho.riak.spark.writer.mapper.TupleWriteDataMapper case m: HashMap[_, _] => { if (m.size == 1) { val entry = m.entrySet().iterator().next() (entry.getKey.toString() -> entry.getValue) } else { (null, m) } } case a: Array[_] => { if (a.size == 1) { (null, a.head) } else { (a.head.toString(), a.tail) } } case _ => (null, value) } // scalastyle:on null } } object DefaultWriteDataMapper { def factory[T]: WriteDataMapperFactory[T, KeyValue] = new WriteDataMapperFactory[T, KeyValue] { override def dataMapper(bucketDef: BucketDef) = { new DefaultWriteDataMapper[T](bucketDef) } } }
Example 22
Source File: ParserGff3Data.scala From piflow with BSD 2-Clause "Simplified" License | 5 votes |
package cn.piflow.bundle.microorganism.util import java.util.HashMap import org.json.JSONObject class ParserGff3Data { def parserAttributes(eachFileStr: String): HashMap[String, String] = { val map: HashMap[String, String] = new HashMap[String,String]() val eachArr = eachFileStr.split(";") for(each <- eachArr){ try{ val k: String = each.split("=")(0) val v: String = each.split("=")(1) map.put(k,v) }catch { case e : Exception => throw new Exception("File format error") } } map } def parserGff3(eachLine: String): JSONObject = { var doc: JSONObject =new JSONObject() val eachArr: Array[String] = eachLine.split("\u0009") if(eachArr.size ==9){ for(x <- (0 until 9)){ val eachFileStr = eachArr(x) if(x == 0){ doc.put("reference_sequence",eachFileStr) }else if(x == 1){ doc.put("source ",eachFileStr) }else if(x == 2){ doc.put("type",eachFileStr) }else if(x == 3){ doc.put("start_position",eachFileStr) }else if(x == 4){ doc.put("end_position",eachFileStr) }else if(x == 5){ doc.put("score",eachFileStr) }else if(x == 6){ doc.put("strand",eachFileStr) }else if(x == 7){ doc.put("phase",eachFileStr) }else if(x == 8){ var map:HashMap[String, String]=parserAttributes(eachFileStr) doc.put("attributes",map) } } } return doc } }