kafka.consumer.ConsumerConfig Scala Examples
The following examples show how to use kafka.consumer.ConsumerConfig.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: KafkaTestUtilsTest.scala From spark-testing-base with Apache License 2.0 | 5 votes |
package com.holdenkarau.spark.testing.kafka import java.util.Properties import scala.collection.JavaConversions._ import kafka.consumer.ConsumerConfig import org.apache.spark.streaming.kafka.KafkaTestUtils import org.junit.runner.RunWith import org.scalatest.junit.JUnitRunner import org.scalatest.{BeforeAndAfterAll, FunSuite} @RunWith(classOf[JUnitRunner]) class KafkaTestUtilsTest extends FunSuite with BeforeAndAfterAll { private var kafkaTestUtils: KafkaTestUtils = _ override def beforeAll(): Unit = { kafkaTestUtils = new KafkaTestUtils kafkaTestUtils.setup() } override def afterAll(): Unit = if (kafkaTestUtils != null) { kafkaTestUtils.teardown() kafkaTestUtils = null } test("Kafka send and receive message") { val topic = "test-topic" val message = "HelloWorld!" kafkaTestUtils.createTopic(topic) kafkaTestUtils.sendMessages(topic, message.getBytes) val consumerProps = new Properties() consumerProps.put("zookeeper.connect", kafkaTestUtils.zkAddress) consumerProps.put("group.id", "test-group") consumerProps.put("flow-topic", topic) consumerProps.put("auto.offset.reset", "smallest") consumerProps.put("zookeeper.session.timeout.ms", "2000") consumerProps.put("zookeeper.connection.timeout.ms", "6000") consumerProps.put("zookeeper.sync.time.ms", "2000") consumerProps.put("auto.commit.interval.ms", "2000") val consumer = kafka.consumer.Consumer.createJavaConsumerConnector(new ConsumerConfig(consumerProps)) try { val topicCountMap = Map(topic -> new Integer(1)) val consumerMap = consumer.createMessageStreams(topicCountMap) val stream = consumerMap.get(topic).get(0) val it = stream.iterator() val mess = it.next assert(new String(mess.message().map(_.toChar)) === message) } finally { consumer.shutdown() } } }
Example 2
Source File: SimpleConsumer.scala From embedded-kafka with Apache License 2.0 | 5 votes |
package com.tuplejump.embedded.kafka import java.util.Properties import java.util.concurrent.{CountDownLatch, Executors} import scala.util.Try import kafka.serializer.StringDecoder import kafka.consumer.{ Consumer, ConsumerConfig } class SimpleConsumer( val latch: CountDownLatch, consumerConfig: Map[String, String], topic: String, groupId: String, partitions: Int, numThreads: Int) { val connector = Consumer.create(createConsumerConfig) val streams = connector .createMessageStreams(Map(topic -> partitions), new StringDecoder(), new StringDecoder()) .get(topic) val executor = Executors.newFixedThreadPool(numThreads) for (stream <- streams) { executor.submit(new Runnable() { def run(): Unit = { for (s <- stream) { while (s.iterator.hasNext) { latch.countDown() } } } }) } private def createConsumerConfig: ConsumerConfig = { import scala.collection.JavaConverters._ val props = new Properties() props.putAll(consumerConfig.asJava) new ConsumerConfig(props) } def shutdown(): Unit = Try { connector.shutdown() executor.shutdown() } }
Example 3
Source File: StreamHQL.scala From spark-cep with Apache License 2.0 | 5 votes |
import java.util.Properties import kafka.consumer.ConsumerConfig import org.I0Itec.zkclient.ZkClient import org.apache.log4j.{Level, Logger} import org.apache.spark.sql.hive.HiveContext import org.apache.spark.sql.streaming.StreamSQLContext import org.apache.spark.sql.streaming.sources.MessageDelimiter import org.apache.spark.streaming.dstream.ConstantInputDStream import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.{SparkConf, SparkContext} import redis.RedisManager import scala.util.parsing.json.JSON class TabDelimiter extends MessageDelimiter { override val delimiter = "\t" } object StreamDDL { def main(args: Array[String]): Unit = { Logger.getRootLogger.setLevel(Level.WARN) val query = args(0) val sc = new SparkContext(new SparkConf()) val ssc = new StreamingContext(sc, Seconds(1)) val streamSqlContext = new StreamSQLContext(ssc, new HiveContext(sc)) streamSqlContext.command(query) new ConstantInputDStream[Int](ssc, sc.parallelize(Seq(1))).print ssc.start() ssc.awaitTerminationOrTimeout(100) ssc.stop() } } object StreamHQL { object Redis { var initialized = false var manager: RedisManager = _ def init(confMap: Map[String, String]) { if (initialized == false) { manager = new RedisManager( confMap("redis.shards"), confMap("redis.sentinels"), confMap("redis.database").toInt) manager.init initialized = true } } } def removeConsumerGroup(zkQuorum: String, groupId: String) { val properties = new Properties() properties.put("zookeeper.connect", zkQuorum) properties.put("group.id", groupId) val conf = new ConsumerConfig(properties) val zkClient = new ZkClient(conf.zkConnect) zkClient.deleteRecursive(s"/consumers/${conf.groupId}") zkClient.close() } def main(args: Array[String]): Unit = { Logger.getRootLogger.setLevel(Level.WARN) val confMap = JSON.parseFull(args(0)).get.asInstanceOf[Map[String, String]] val qid = args(1) val query = args(2) val sc = new SparkContext(new SparkConf()) val ssc = new StreamingContext(sc, Seconds(1)) val hc = new HiveContext(sc) val streamSqlContext = new StreamSQLContext(ssc, hc) val redisExpireSec = confMap("redis.expire.sec").toInt ssc.checkpoint(s"checkpoint/$qid") hc.setConf("spark.streaming.query.id", qid) hc.setConf("spark.sql.shuffle.partitions", confMap("spark.sql.shuffle.partitions")) removeConsumerGroup(confMap("kafka.zookeeper.quorum"), qid) val result = streamSqlContext.sql(query) val schema = result.schema result.foreachRDD((rdd, time) => { rdd.foreachPartition(partition => { Redis.init(confMap) val jedis = Redis.manager.getResource val pipe = jedis.pipelined partition.foreach(record => { val seq = record.toSeq(schema) val ts = time.milliseconds / 1000 val hkey = seq.take(seq.size - 1).mkString(".") pipe.hset(qid + "." + ts, hkey, seq(seq.size - 1).toString) pipe.expire(qid + "." + ts, redisExpireSec) }) pipe.sync Redis.manager.returnResource(jedis) }) }) ssc.start() ssc.awaitTermination() ssc.stop() } }
Example 4
Source File: KafkaConsumer.scala From Swallow with Apache License 2.0 | 5 votes |
package com.intel.hibench.common.streaming.metrics import java.util.Properties import kafka.api.{OffsetRequest, FetchRequestBuilder} import kafka.common.ErrorMapping._ import kafka.common.TopicAndPartition import kafka.consumer.{ConsumerConfig, SimpleConsumer} import kafka.message.MessageAndOffset import kafka.utils.{ZKStringSerializer, ZkUtils, Utils} import org.I0Itec.zkclient.ZkClient class KafkaConsumer(zookeeperConnect: String, topic: String, partition: Int) { private val CLIENT_ID = "metrics_reader" private val props = new Properties() props.put("zookeeper.connect", zookeeperConnect) props.put("group.id", CLIENT_ID) private val config = new ConsumerConfig(props) private val consumer = createConsumer private val earliestOffset = consumer .earliestOrLatestOffset(TopicAndPartition(topic, partition), OffsetRequest.EarliestTime, -1) private var nextOffset: Long = earliestOffset private var iterator: Iterator[MessageAndOffset] = getIterator(nextOffset) def next(): Array[Byte] = { val mo = iterator.next() val message = mo.message nextOffset = mo.nextOffset Utils.readBytes(message.payload) } def hasNext: Boolean = { @annotation.tailrec def hasNextHelper(iter: Iterator[MessageAndOffset], newIterator: Boolean): Boolean = { if (iter.hasNext) true else if (newIterator) false else { iterator = getIterator(nextOffset) hasNextHelper(iterator, newIterator = true) } } hasNextHelper(iterator, newIterator = false) } def close(): Unit = { consumer.close() } private def createConsumer: SimpleConsumer = { val zkClient = new ZkClient(zookeeperConnect, 6000, 6000, ZKStringSerializer) try { val leader = ZkUtils.getLeaderForPartition(zkClient, topic, partition) .getOrElse(throw new RuntimeException( s"leader not available for TopicAndPartition($topic, $partition)")) val broker = ZkUtils.getBrokerInfo(zkClient, leader) .getOrElse(throw new RuntimeException(s"broker info not found for leader $leader")) new SimpleConsumer(broker.host, broker.port, config.socketTimeoutMs, config.socketReceiveBufferBytes, CLIENT_ID) } catch { case e: Exception => throw e } finally { zkClient.close() } } private def getIterator(offset: Long): Iterator[MessageAndOffset] = { val request = new FetchRequestBuilder() .addFetch(topic, partition, offset, config.fetchMessageMaxBytes) .build() val response = consumer.fetch(request) response.errorCode(topic, partition) match { case NoError => response.messageSet(topic, partition).iterator case error => throw exceptionFor(error) } } }
Example 5
Source File: SimpleConsumer.scala From Fast-Data-Processing-Systems-with-SMACK-Stack with MIT License | 5 votes |
package packt.ch05 import java.util import java.util.Properties import kafka.consumer.ConsumerConfig import SimpleConsumer._ import scala.collection.JavaConversions._ object SimpleConsumer { private def createConsumerConfig(zookeeper: String, groupId: String): ConsumerConfig = { val props = new Properties() props.put("zookeeper.connect", zookeeper) props.put("group.id", groupId) props.put("zookeeper.session.timeout.ms", "500") props.put("zookeeper.sync.time.ms", "250") props.put("auto.commit.interval.ms", "1000") new ConsumerConfig(props) } def main(args: Array[String]) { val zooKeeper = args(0) val groupId = args(1) val topic = args(2) val simpleHLConsumer = new SimpleConsumer(zooKeeper, groupId, topic) simpleHLConsumer.testConsumer() } } class SimpleConsumer(zookeeper: String, groupId: String, private val topic: String) { private val consumer = kafka.consumer.Consumer.createJavaConsumerConnector(createConsumerConfig(zookeeper, groupId)) def testConsumer() { val topicMap = new util.HashMap[String, Integer]() topicMap.put(topic, 1) val consumerStreamsMap = consumer.createMessageStreams(topicMap) val streamList = consumerStreamsMap.get(topic) for (stream <- streamList; aStream <- stream) println("Message from Single Topic :: " + new String(aStream.message())) if (consumer != null) { consumer.shutdown() } } }
Example 6
Source File: MultiThreadConsumer.scala From Fast-Data-Processing-Systems-with-SMACK-Stack with MIT License | 5 votes |
package packt.ch05 import java.util import java.util.Properties import java.util.concurrent.ExecutorService import java.util.concurrent.Executors import kafka.consumer.ConsumerConfig import MultiThreadConsumer._ import scala.collection.JavaConversions._ object MultiThreadConsumer { private def createConsumerConfig(zookeeper: String, groupId: String): ConsumerConfig = { val props = new Properties() props.put("zookeeper.connect", zookeeper) props.put("group.id", groupId) props.put("zookeeper.session.timeout.ms", "500") props.put("zookeeper.sync.time.ms", "250") props.put("auto.commit.interval.ms", "1000") new ConsumerConfig(props) } def main(args: Array[String]) { val zooKeeper = args(0) val groupId = args(1) val topic = args(2) val threadCount = java.lang.Integer.parseInt(args(3)) val multiThreadHLConsumer = new MultiThreadConsumer(zooKeeper, groupId, topic) multiThreadHLConsumer.testMultiThreadConsumer(threadCount) try { Thread.sleep(10000) } catch { case ie: InterruptedException => } multiThreadHLConsumer.shutdown() } } class MultiThreadConsumer(zookeeper: String, groupId: String, topic: String) { private var executor: ExecutorService = _ private val consumer = kafka.consumer.Consumer.createJavaConsumerConnector(createConsumerConfig(zookeeper, groupId)) def shutdown() { if (consumer != null) consumer.shutdown() if (executor != null) executor.shutdown() } def testMultiThreadConsumer(threadCount: Int) { val topicMap = new util.HashMap[String, Integer]() // Define thread count for each topic topicMap.put(topic, threadCount) // Here we have used a single topic but we can also add // multiple topics to topicCount MAP val consumerStreamsMap = consumer.createMessageStreams(topicMap) val streamList = consumerStreamsMap.get(topic) // Launching the thread pool executor = Executors.newFixedThreadPool(threadCount) // Creating an object messages consumption var count = 0 for (stream <- streamList) { val threadNumber = count executor.submit(new Runnable() { def run() { val consumerIte = stream.iterator() while (consumerIte.hasNext) println("Thread Number " + threadNumber + ": " + new String(consumerIte.next().message())) println("Shutting down Thread Number: " + threadNumber) } }) count += 1 } if (consumer != null) consumer.shutdown() if (executor != null) executor.shutdown() } }