org.apache.hadoop.io.Writable Scala Examples
The following examples show how to use org.apache.hadoop.io.Writable.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: BinaryFileRDD.scala From SparkCore with Apache License 2.0 | 5 votes |
package org.apache.spark.rdd import org.apache.hadoop.conf.{ Configurable, Configuration } import org.apache.hadoop.io.Writable import org.apache.hadoop.mapreduce._ import org.apache.spark.input.StreamFileInputFormat import org.apache.spark.{ Partition, SparkContext } private[spark] class BinaryFileRDD[T]( sc: SparkContext, inputFormatClass: Class[_ <: StreamFileInputFormat[T]], keyClass: Class[String], valueClass: Class[T], @transient conf: Configuration, minPartitions: Int) extends NewHadoopRDD[String, T](sc, inputFormatClass, keyClass, valueClass, conf) { override def getPartitions: Array[Partition] = { val inputFormat = inputFormatClass.newInstance inputFormat match { case configurable: Configurable => configurable.setConf(conf) case _ => } val jobContext = newJobContext(conf, jobId) inputFormat.setMinPartitions(jobContext, minPartitions) val rawSplits = inputFormat.getSplits(jobContext).toArray val result = new Array[Partition](rawSplits.size) for (i <- 0 until rawSplits.size) { result(i) = new NewHadoopPartition(id, i, rawSplits(i).asInstanceOf[InputSplit with Writable]) } result } }
Example 2
Source File: SerializableWritable.scala From spark-acid with Apache License 2.0 | 5 votes |
package com.qubole.spark.hiveacid.util import java.io._ import org.apache.hadoop.conf.Configuration import org.apache.hadoop.io.ObjectWritable import org.apache.hadoop.io.Writable private[hiveacid] class SerializableWritable[T <: Writable](@transient var t: T) extends Serializable { def value: T = t override def toString: String = t.toString private def writeObject(out: ObjectOutputStream): Unit = Util.tryOrIOException { out.defaultWriteObject() new ObjectWritable(t).write(out) } private def readObject(in: ObjectInputStream): Unit = Util.tryOrIOException { in.defaultReadObject() val ow = new ObjectWritable() ow.setConf(new Configuration(false)) ow.readFields(in) t = ow.get().asInstanceOf[T] } }
Example 3
Source File: BinaryFileRDD.scala From BigDatalog with Apache License 2.0 | 5 votes |
package org.apache.spark.rdd import org.apache.hadoop.conf.{ Configurable, Configuration } import org.apache.hadoop.io.Writable import org.apache.hadoop.mapreduce._ import org.apache.spark.input.StreamFileInputFormat import org.apache.spark.{ Partition, SparkContext } private[spark] class BinaryFileRDD[T]( sc: SparkContext, inputFormatClass: Class[_ <: StreamFileInputFormat[T]], keyClass: Class[String], valueClass: Class[T], conf: Configuration, minPartitions: Int) extends NewHadoopRDD[String, T](sc, inputFormatClass, keyClass, valueClass, conf) { override def getPartitions: Array[Partition] = { val inputFormat = inputFormatClass.newInstance val conf = getConf inputFormat match { case configurable: Configurable => configurable.setConf(conf) case _ => } val jobContext = newJobContext(conf, jobId) inputFormat.setMinPartitions(jobContext, minPartitions) val rawSplits = inputFormat.getSplits(jobContext).toArray val result = new Array[Partition](rawSplits.size) for (i <- 0 until rawSplits.size) { result(i) = new NewHadoopPartition(id, i, rawSplits(i).asInstanceOf[InputSplit with Writable]) } result } }
Example 4
Source File: WholeTextFileRDD.scala From BigDatalog with Apache License 2.0 | 5 votes |
package org.apache.spark.rdd import org.apache.hadoop.conf.{Configurable, Configuration} import org.apache.hadoop.io.{Text, Writable} import org.apache.hadoop.mapreduce.InputSplit import org.apache.spark.{Partition, SparkContext} import org.apache.spark.input.WholeTextFileInputFormat private[spark] class WholeTextFileRDD( sc : SparkContext, inputFormatClass: Class[_ <: WholeTextFileInputFormat], keyClass: Class[Text], valueClass: Class[Text], conf: Configuration, minPartitions: Int) extends NewHadoopRDD[Text, Text](sc, inputFormatClass, keyClass, valueClass, conf) { override def getPartitions: Array[Partition] = { val inputFormat = inputFormatClass.newInstance val conf = getConf inputFormat match { case configurable: Configurable => configurable.setConf(conf) case _ => } val jobContext = newJobContext(conf, jobId) inputFormat.setMinPartitions(jobContext, minPartitions) val rawSplits = inputFormat.getSplits(jobContext).toArray val result = new Array[Partition](rawSplits.size) for (i <- 0 until rawSplits.size) { result(i) = new NewHadoopPartition(id, i, rawSplits(i).asInstanceOf[InputSplit with Writable]) } result } }
Example 5
Source File: SerializableWritable.scala From BigDatalog with Apache License 2.0 | 5 votes |
package org.apache.spark import java.io._ import org.apache.hadoop.conf.Configuration import org.apache.hadoop.io.ObjectWritable import org.apache.hadoop.io.Writable import org.apache.spark.annotation.DeveloperApi import org.apache.spark.util.Utils @DeveloperApi class SerializableWritable[T <: Writable](@transient var t: T) extends Serializable { def value: T = t override def toString: String = t.toString private def writeObject(out: ObjectOutputStream): Unit = Utils.tryOrIOException { out.defaultWriteObject() new ObjectWritable(t).write(out) } private def readObject(in: ObjectInputStream): Unit = Utils.tryOrIOException { in.defaultReadObject() val ow = new ObjectWritable() ow.setConf(new Configuration(false)) ow.readFields(in) t = ow.get().asInstanceOf[T] } }
Example 6
Source File: BinaryFileRDD.scala From Spark-2.3.1 with Apache License 2.0 | 5 votes |
package org.apache.spark.rdd import org.apache.hadoop.conf.{Configurable, Configuration} import org.apache.hadoop.io.Writable import org.apache.hadoop.mapreduce._ import org.apache.hadoop.mapreduce.lib.input.FileInputFormat import org.apache.hadoop.mapreduce.task.JobContextImpl import org.apache.spark.{Partition, SparkContext} import org.apache.spark.input.StreamFileInputFormat private[spark] class BinaryFileRDD[T]( @transient private val sc: SparkContext, inputFormatClass: Class[_ <: StreamFileInputFormat[T]], keyClass: Class[String], valueClass: Class[T], conf: Configuration, minPartitions: Int) extends NewHadoopRDD[String, T](sc, inputFormatClass, keyClass, valueClass, conf) { override def getPartitions: Array[Partition] = { val conf = getConf // setMinPartitions below will call FileInputFormat.listStatus(), which can be quite slow when // traversing a large number of directories and files. Parallelize it. conf.setIfUnset(FileInputFormat.LIST_STATUS_NUM_THREADS, Runtime.getRuntime.availableProcessors().toString) val inputFormat = inputFormatClass.newInstance inputFormat match { case configurable: Configurable => configurable.setConf(conf) case _ => } val jobContext = new JobContextImpl(conf, jobId) inputFormat.setMinPartitions(sc, jobContext, minPartitions) val rawSplits = inputFormat.getSplits(jobContext).toArray val result = new Array[Partition](rawSplits.size) for (i <- 0 until rawSplits.size) { result(i) = new NewHadoopPartition(id, i, rawSplits(i).asInstanceOf[InputSplit with Writable]) } result } }
Example 7
Source File: SequenceFileRDDFunctions.scala From Spark-2.3.1 with Apache License 2.0 | 5 votes |
package org.apache.spark.rdd import scala.reflect.ClassTag import org.apache.hadoop.io.Writable import org.apache.hadoop.io.compress.CompressionCodec import org.apache.hadoop.mapred.JobConf import org.apache.hadoop.mapred.SequenceFileOutputFormat import org.apache.spark.internal.Logging def saveAsSequenceFile( path: String, codec: Option[Class[_ <: CompressionCodec]] = None): Unit = self.withScope { def anyToWritable[U <% Writable](u: U): Writable = u // TODO We cannot force the return type of `anyToWritable` be same as keyWritableClass and // valueWritableClass at the compile time. To implement that, we need to add type parameters to // SequenceFileRDDFunctions. however, SequenceFileRDDFunctions is a public class so it will be a // breaking change. val convertKey = self.keyClass != _keyWritableClass val convertValue = self.valueClass != _valueWritableClass logInfo("Saving as sequence file of type " + s"(${_keyWritableClass.getSimpleName},${_valueWritableClass.getSimpleName})" ) val format = classOf[SequenceFileOutputFormat[Writable, Writable]] val jobConf = new JobConf(self.context.hadoopConfiguration) if (!convertKey && !convertValue) { self.saveAsHadoopFile(path, _keyWritableClass, _valueWritableClass, format, jobConf, codec) } else if (!convertKey && convertValue) { self.map(x => (x._1, anyToWritable(x._2))).saveAsHadoopFile( path, _keyWritableClass, _valueWritableClass, format, jobConf, codec) } else if (convertKey && !convertValue) { self.map(x => (anyToWritable(x._1), x._2)).saveAsHadoopFile( path, _keyWritableClass, _valueWritableClass, format, jobConf, codec) } else if (convertKey && convertValue) { self.map(x => (anyToWritable(x._1), anyToWritable(x._2))).saveAsHadoopFile( path, _keyWritableClass, _valueWritableClass, format, jobConf, codec) } } }
Example 8
Source File: WholeTextFileRDD.scala From Spark-2.3.1 with Apache License 2.0 | 5 votes |
package org.apache.spark.rdd import org.apache.hadoop.conf.{Configurable, Configuration} import org.apache.hadoop.io.{Text, Writable} import org.apache.hadoop.mapreduce.InputSplit import org.apache.hadoop.mapreduce.lib.input.FileInputFormat import org.apache.hadoop.mapreduce.task.JobContextImpl import org.apache.spark.{Partition, SparkContext} import org.apache.spark.input.WholeTextFileInputFormat private[spark] class WholeTextFileRDD( sc : SparkContext, inputFormatClass: Class[_ <: WholeTextFileInputFormat], keyClass: Class[Text], valueClass: Class[Text], conf: Configuration, minPartitions: Int) extends NewHadoopRDD[Text, Text](sc, inputFormatClass, keyClass, valueClass, conf) { override def getPartitions: Array[Partition] = { val conf = getConf // setMinPartitions below will call FileInputFormat.listStatus(), which can be quite slow when // traversing a large number of directories and files. Parallelize it. conf.setIfUnset(FileInputFormat.LIST_STATUS_NUM_THREADS, Runtime.getRuntime.availableProcessors().toString) val inputFormat = inputFormatClass.newInstance inputFormat match { case configurable: Configurable => configurable.setConf(conf) case _ => } val jobContext = new JobContextImpl(conf, jobId) inputFormat.setMinPartitions(jobContext, minPartitions) val rawSplits = inputFormat.getSplits(jobContext).toArray val result = new Array[Partition](rawSplits.size) for (i <- 0 until rawSplits.size) { result(i) = new NewHadoopPartition(id, i, rawSplits(i).asInstanceOf[InputSplit with Writable]) } result } }
Example 9
Source File: SerializableWritable.scala From Spark-2.3.1 with Apache License 2.0 | 5 votes |
package org.apache.spark import java.io._ import org.apache.hadoop.conf.Configuration import org.apache.hadoop.io.ObjectWritable import org.apache.hadoop.io.Writable import org.apache.spark.annotation.DeveloperApi import org.apache.spark.util.Utils @DeveloperApi class SerializableWritable[T <: Writable](@transient var t: T) extends Serializable { def value: T = t override def toString: String = t.toString private def writeObject(out: ObjectOutputStream): Unit = Utils.tryOrIOException { out.defaultWriteObject() new ObjectWritable(t).write(out) } private def readObject(in: ObjectInputStream): Unit = Utils.tryOrIOException { in.defaultReadObject() val ow = new ObjectWritable() ow.setConf(new Configuration(false)) ow.readFields(in) t = ow.get().asInstanceOf[T] } }
Example 10
Source File: BinaryFileRDD.scala From spark1.52 with Apache License 2.0 | 5 votes |
package org.apache.spark.rdd import org.apache.hadoop.conf.{ Configurable, Configuration } import org.apache.hadoop.io.Writable import org.apache.hadoop.mapreduce._ import org.apache.spark.input.StreamFileInputFormat import org.apache.spark.{ Partition, SparkContext } private[spark] class BinaryFileRDD[T]( sc: SparkContext, inputFormatClass: Class[_ <: StreamFileInputFormat[T]], keyClass: Class[String], valueClass: Class[T], @transient conf: Configuration, minPartitions: Int) extends NewHadoopRDD[String, T](sc, inputFormatClass, keyClass, valueClass, conf) { override def getPartitions: Array[Partition] = { val inputFormat = inputFormatClass.newInstance val conf = getConf inputFormat match { case configurable: Configurable => configurable.setConf(conf) case _ => } val jobContext = newJobContext(conf, jobId) inputFormat.setMinPartitions(jobContext, minPartitions) val rawSplits = inputFormat.getSplits(jobContext).toArray val result = new Array[Partition](rawSplits.size) for (i <- 0 until rawSplits.size) { result(i) = new NewHadoopPartition(id, i, rawSplits(i).asInstanceOf[InputSplit with Writable]) } result } }
Example 11
Source File: SerializableWritable.scala From spark1.52 with Apache License 2.0 | 5 votes |
package org.apache.spark import java.io._ import org.apache.hadoop.conf.Configuration import org.apache.hadoop.io.ObjectWritable import org.apache.hadoop.io.Writable import org.apache.spark.annotation.DeveloperApi import org.apache.spark.util.Utils @DeveloperApi class SerializableWritable[T <: Writable](@transient var t: T) extends Serializable { def value: T = t override def toString: String = t.toString private def writeObject(out: ObjectOutputStream): Unit = Utils.tryOrIOException { out.defaultWriteObject() new ObjectWritable(t).write(out) } private def readObject(in: ObjectInputStream): Unit = Utils.tryOrIOException { in.defaultReadObject() val ow = new ObjectWritable() ow.setConf(new Configuration(false)) ow.readFields(in) t = ow.get().asInstanceOf[T] } }
Example 12
Source File: BinaryFileRDD.scala From iolap with Apache License 2.0 | 5 votes |
package org.apache.spark.rdd import org.apache.hadoop.conf.{ Configurable, Configuration } import org.apache.hadoop.io.Writable import org.apache.hadoop.mapreduce._ import org.apache.spark.input.StreamFileInputFormat import org.apache.spark.{ Partition, SparkContext } private[spark] class BinaryFileRDD[T]( sc: SparkContext, inputFormatClass: Class[_ <: StreamFileInputFormat[T]], keyClass: Class[String], valueClass: Class[T], @transient conf: Configuration, minPartitions: Int) extends NewHadoopRDD[String, T](sc, inputFormatClass, keyClass, valueClass, conf) { override def getPartitions: Array[Partition] = { val inputFormat = inputFormatClass.newInstance inputFormat match { case configurable: Configurable => configurable.setConf(conf) case _ => } val jobContext = newJobContext(conf, jobId) inputFormat.setMinPartitions(jobContext, minPartitions) val rawSplits = inputFormat.getSplits(jobContext).toArray val result = new Array[Partition](rawSplits.size) for (i <- 0 until rawSplits.size) { result(i) = new NewHadoopPartition(id, i, rawSplits(i).asInstanceOf[InputSplit with Writable]) } result } }
Example 13
Source File: SerializableWritable.scala From iolap with Apache License 2.0 | 5 votes |
package org.apache.spark import java.io._ import org.apache.hadoop.conf.Configuration import org.apache.hadoop.io.ObjectWritable import org.apache.hadoop.io.Writable import org.apache.spark.annotation.DeveloperApi import org.apache.spark.util.Utils @DeveloperApi class SerializableWritable[T <: Writable](@transient var t: T) extends Serializable { def value: T = t override def toString: String = t.toString private def writeObject(out: ObjectOutputStream): Unit = Utils.tryOrIOException { out.defaultWriteObject() new ObjectWritable(t).write(out) } private def readObject(in: ObjectInputStream): Unit = Utils.tryOrIOException { in.defaultReadObject() val ow = new ObjectWritable() ow.setConf(new Configuration()) ow.readFields(in) t = ow.get().asInstanceOf[T] } }
Example 14
Source File: BinaryFileRDD.scala From multi-tenancy-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.rdd import org.apache.hadoop.conf.{Configurable, Configuration} import org.apache.hadoop.io.Writable import org.apache.hadoop.mapreduce._ import org.apache.hadoop.mapreduce.task.JobContextImpl import org.apache.spark.{Partition, SparkContext} import org.apache.spark.input.StreamFileInputFormat private[spark] class BinaryFileRDD[T]( @transient private val sc: SparkContext, inputFormatClass: Class[_ <: StreamFileInputFormat[T]], keyClass: Class[String], valueClass: Class[T], conf: Configuration, minPartitions: Int) extends NewHadoopRDD[String, T](sc, inputFormatClass, keyClass, valueClass, conf) { override def getPartitions: Array[Partition] = { val inputFormat = inputFormatClass.newInstance val conf = getConf inputFormat match { case configurable: Configurable => configurable.setConf(conf) case _ => } val jobContext = new JobContextImpl(conf, jobId) inputFormat.setMinPartitions(sc, jobContext, minPartitions) val rawSplits = inputFormat.getSplits(jobContext).toArray val result = new Array[Partition](rawSplits.size) for (i <- 0 until rawSplits.size) { result(i) = new NewHadoopPartition(id, i, rawSplits(i).asInstanceOf[InputSplit with Writable]) } result } }
Example 15
Source File: WholeTextFileRDD.scala From multi-tenancy-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.rdd import org.apache.hadoop.conf.{Configurable, Configuration} import org.apache.hadoop.io.{Text, Writable} import org.apache.hadoop.mapreduce.InputSplit import org.apache.hadoop.mapreduce.task.JobContextImpl import org.apache.spark.{Partition, SparkContext} import org.apache.spark.input.WholeTextFileInputFormat private[spark] class WholeTextFileRDD( sc : SparkContext, inputFormatClass: Class[_ <: WholeTextFileInputFormat], keyClass: Class[Text], valueClass: Class[Text], conf: Configuration, minPartitions: Int) extends NewHadoopRDD[Text, Text](sc, inputFormatClass, keyClass, valueClass, conf) { override def getPartitions: Array[Partition] = { val inputFormat = inputFormatClass.newInstance val conf = getConf inputFormat match { case configurable: Configurable => configurable.setConf(conf) case _ => } val jobContext = new JobContextImpl(conf, jobId) inputFormat.setMinPartitions(jobContext, minPartitions) val rawSplits = inputFormat.getSplits(jobContext).toArray val result = new Array[Partition](rawSplits.size) for (i <- 0 until rawSplits.size) { result(i) = new NewHadoopPartition(id, i, rawSplits(i).asInstanceOf[InputSplit with Writable]) } result } }
Example 16
Source File: SerializableWritable.scala From multi-tenancy-spark with Apache License 2.0 | 5 votes |
package org.apache.spark import java.io._ import org.apache.hadoop.conf.Configuration import org.apache.hadoop.io.ObjectWritable import org.apache.hadoop.io.Writable import org.apache.spark.annotation.DeveloperApi import org.apache.spark.util.Utils @DeveloperApi class SerializableWritable[T <: Writable](@transient var t: T) extends Serializable { def value: T = t override def toString: String = t.toString private def writeObject(out: ObjectOutputStream): Unit = Utils.tryOrIOException { out.defaultWriteObject() new ObjectWritable(t).write(out) } private def readObject(in: ObjectInputStream): Unit = Utils.tryOrIOException { in.defaultReadObject() val ow = new ObjectWritable() ow.setConf(new Configuration(false)) ow.readFields(in) t = ow.get().asInstanceOf[T] } }
Example 17
Source File: SerializableWritable.scala From drizzle-spark with Apache License 2.0 | 5 votes |
package org.apache.spark import java.io._ import org.apache.hadoop.conf.Configuration import org.apache.hadoop.io.ObjectWritable import org.apache.hadoop.io.Writable import org.apache.spark.annotation.DeveloperApi import org.apache.spark.util.Utils @DeveloperApi class SerializableWritable[T <: Writable](@transient var t: T) extends Serializable { def value: T = t override def toString: String = t.toString private def writeObject(out: ObjectOutputStream): Unit = Utils.tryOrIOException { out.defaultWriteObject() new ObjectWritable(t).write(out) } private def readObject(in: ObjectInputStream): Unit = Utils.tryOrIOException { in.defaultReadObject() val ow = new ObjectWritable() ow.setConf(new Configuration(false)) ow.readFields(in) t = ow.get().asInstanceOf[T] } }
Example 18
Source File: SerializableWritable.scala From SparkCore with Apache License 2.0 | 5 votes |
package org.apache.spark import java.io._ import org.apache.hadoop.conf.Configuration import org.apache.hadoop.io.ObjectWritable import org.apache.hadoop.io.Writable import org.apache.spark.annotation.DeveloperApi import org.apache.spark.util.Utils @DeveloperApi class SerializableWritable[T <: Writable](@transient var t: T) extends Serializable { def value = t override def toString = t.toString private def writeObject(out: ObjectOutputStream): Unit = Utils.tryOrIOException { out.defaultWriteObject() new ObjectWritable(t).write(out) } private def readObject(in: ObjectInputStream): Unit = Utils.tryOrIOException { in.defaultReadObject() val ow = new ObjectWritable() ow.setConf(new Configuration()) ow.readFields(in) t = ow.get().asInstanceOf[T] } }
Example 19
Source File: BinaryFileRDD.scala From sparkoscope with Apache License 2.0 | 5 votes |
package org.apache.spark.rdd import org.apache.hadoop.conf.{Configurable, Configuration} import org.apache.hadoop.io.Writable import org.apache.hadoop.mapreduce._ import org.apache.hadoop.mapreduce.task.JobContextImpl import org.apache.spark.{Partition, SparkContext} import org.apache.spark.input.StreamFileInputFormat private[spark] class BinaryFileRDD[T]( @transient private val sc: SparkContext, inputFormatClass: Class[_ <: StreamFileInputFormat[T]], keyClass: Class[String], valueClass: Class[T], conf: Configuration, minPartitions: Int) extends NewHadoopRDD[String, T](sc, inputFormatClass, keyClass, valueClass, conf) { override def getPartitions: Array[Partition] = { val inputFormat = inputFormatClass.newInstance val conf = getConf inputFormat match { case configurable: Configurable => configurable.setConf(conf) case _ => } val jobContext = new JobContextImpl(conf, jobId) inputFormat.setMinPartitions(sc, jobContext, minPartitions) val rawSplits = inputFormat.getSplits(jobContext).toArray val result = new Array[Partition](rawSplits.size) for (i <- 0 until rawSplits.size) { result(i) = new NewHadoopPartition(id, i, rawSplits(i).asInstanceOf[InputSplit with Writable]) } result } }
Example 20
Source File: WholeTextFileRDD.scala From sparkoscope with Apache License 2.0 | 5 votes |
package org.apache.spark.rdd import org.apache.hadoop.conf.{Configurable, Configuration} import org.apache.hadoop.io.{Text, Writable} import org.apache.hadoop.mapreduce.InputSplit import org.apache.hadoop.mapreduce.task.JobContextImpl import org.apache.spark.{Partition, SparkContext} import org.apache.spark.input.WholeTextFileInputFormat private[spark] class WholeTextFileRDD( sc : SparkContext, inputFormatClass: Class[_ <: WholeTextFileInputFormat], keyClass: Class[Text], valueClass: Class[Text], conf: Configuration, minPartitions: Int) extends NewHadoopRDD[Text, Text](sc, inputFormatClass, keyClass, valueClass, conf) { override def getPartitions: Array[Partition] = { val inputFormat = inputFormatClass.newInstance val conf = getConf inputFormat match { case configurable: Configurable => configurable.setConf(conf) case _ => } val jobContext = new JobContextImpl(conf, jobId) inputFormat.setMinPartitions(jobContext, minPartitions) val rawSplits = inputFormat.getSplits(jobContext).toArray val result = new Array[Partition](rawSplits.size) for (i <- 0 until rawSplits.size) { result(i) = new NewHadoopPartition(id, i, rawSplits(i).asInstanceOf[InputSplit with Writable]) } result } }
Example 21
Source File: SerializableWritable.scala From sparkoscope with Apache License 2.0 | 5 votes |
package org.apache.spark import java.io._ import org.apache.hadoop.conf.Configuration import org.apache.hadoop.io.ObjectWritable import org.apache.hadoop.io.Writable import org.apache.spark.annotation.DeveloperApi import org.apache.spark.util.Utils @DeveloperApi class SerializableWritable[T <: Writable](@transient var t: T) extends Serializable { def value: T = t override def toString: String = t.toString private def writeObject(out: ObjectOutputStream): Unit = Utils.tryOrIOException { out.defaultWriteObject() new ObjectWritable(t).write(out) } private def readObject(in: ObjectInputStream): Unit = Utils.tryOrIOException { in.defaultReadObject() val ow = new ObjectWritable() ow.setConf(new Configuration(false)) ow.readFields(in) t = ow.get().asInstanceOf[T] } }
Example 22
Source File: OsmShape.scala From magellan with Apache License 2.0 | 5 votes |
package magellan.io import org.apache.spark.SerializableWritable import java.io.{DataInput, DataOutput, ByteArrayOutputStream} import org.apache.hadoop.io.{Writable, Text, FloatWritable, MapWritable, ArrayWritable} import magellan.{Shape, Point} import collection.JavaConversions._ case class OsmKey(val shapeType: String, val id: String) extends Serializable { } abstract class OsmShape(val id: String, val tags: Map[String, String]) extends Serializable { } case class OsmNode( override val id: String, val lat: Double, val lon: Double, override val tags: Map[String, String]) extends OsmShape(id, tags) { def point: Point = Point(lon, lat) } case class OsmWay( override val id: String, val nodeIds: Seq[String], override val tags: Map[String, String]) extends OsmShape(id, tags) { } case class OsmRelation( override val id: String, val wayIds: Seq[String], override val tags: Map[String, String]) extends OsmShape(id, tags) { }
Example 23
Source File: ShapeWritable.scala From magellan with Apache License 2.0 | 5 votes |
package magellan.io import java.io.{DataInput, DataOutput} import magellan.Shape import org.apache.commons.io.EndianUtils import org.apache.hadoop.io.Writable private[magellan] class ShapeWritable extends Writable { var shape: Shape = _ override def write(dataOutput: DataOutput): Unit = { ??? } override def readFields(dataInput: DataInput): Unit = { val shapeType = EndianUtils.swapInteger(dataInput.readInt()) val h = shapeType match { case 0 => new NullShapeReader() case 1 => new PointReader() case 3 => new PolyLineReader() case 5 => new PolygonReader() case 13 => new PolyLineZReader() case _ => ??? } shape = h.readFields(dataInput) } }
Example 24
Source File: WritableSerializer.scala From spark-util with Apache License 2.0 | 5 votes |
package org.hammerlab.hadoop.kryo import java.io.{ DataInputStream, DataOutputStream } import com.esotericsoftware.kryo import com.esotericsoftware.kryo.io.{ Input, Output } import com.esotericsoftware.kryo.{ Kryo, Serializer } import org.apache.hadoop.io.Writable class WritableSerializer[T <: Writable](ctorArgs: Any*) extends kryo.Serializer[T] { override def read(kryo: Kryo, input: Input, clz: Class[T]): T = { val t = clz.newInstance() t.readFields(new DataInputStream(input)) t } override def write(kryo: Kryo, output: Output, t: T): Unit = { t.write(new DataOutputStream(output)) } }
Example 25
Source File: WriSer.scala From flint with Apache License 2.0 | 5 votes |
package com.twosigma.flint.hadoop import java.io.{ DataInputStream, DataOutputStream, ObjectInputStream, ObjectOutputStream } import java.io.IOException import scala.reflect.{ classTag, ClassTag } import org.apache.hadoop.io.Writable // Note: we could make this implement InputSplit, but we do not because many input splits do a // cast to their specific InputSplit, so we do not want to risk it. Further, this currently works // for any Writable. case class WriSer[T <: Writable: ClassTag](@transient var get: T) extends Serializable { def this() = this(null.asInstanceOf[T]) @throws(classOf[IOException]) private def writeObject(out: ObjectOutputStream) { out.writeObject(classTag[T]) get.write(new DataOutputStream(out)) } @throws(classOf[IOException]) @throws(classOf[ClassNotFoundException]) private def readObject(in: ObjectInputStream) { get = in.readObject.asInstanceOf[ClassTag[T]].runtimeClass.newInstance.asInstanceOf[T] get.readFields(new DataInputStream(in)) } }
Example 26
Source File: InputFormatConf.scala From flint with Apache License 2.0 | 5 votes |
package com.twosigma.flint.hadoop import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.{ FileSystem, Path } import org.apache.hadoop.io.{ LongWritable, Text, Writable } import org.apache.hadoop.mapreduce.{ InputFormat, InputSplit, Job, RecordReader } import org.apache.hadoop.mapreduce.lib.input.{ FileInputFormat, FileSplit, TextInputFormat } import scala.collection.immutable trait InputFormatConf[K, V] extends Serializable { type IF <: InputFormat[K, V] type Split <: InputSplit with Writable type KExtract <: Extract[K] type VExtract <: Extract[V] def kExtract: KExtract def vExtract: VExtract def makeInputFormat(): IF // I'm unsure if we should WriSer them for them def makeSplits(hadoopConf: Configuration): IndexedSeq[WriSer[Split]] // TODO do we want to require typing of the RecordReader as well? final def createRecordReader(hadoopConf: Configuration, split: Split, inputFormat: IF = makeInputFormat()): RecordReader[K, V] = { val tac = ConfOnlyTAC(hadoopConf) val recordReader = inputFormat.createRecordReader(split, tac) recordReader.initialize(split, tac) recordReader } } case class TextInputFormatConf(file: String, partitions: Int) extends InputFormatConf[LongWritable, Text] { type IF = TextInputFormat type Split = FileSplit // TODO now that we figured out what's up, see if we can't eliminate the need for this... val internalK = Extract.unit[LongWritable] val internalV = Extract.text type KExtract = internalK.type type VExtract = internalV.type override val kExtract: KExtract = internalK override val vExtract: VExtract = internalV def makeInputFormat() = new TextInputFormat() def makeSplits(hadoopConf: Configuration): immutable.IndexedSeq[WriSer[FileSplit]] = { val job = Job.getInstance(hadoopConf) FileInputFormat.setInputPaths(job, file) val path = new Path(file) val len = FileSystem.get(hadoopConf).listStatus(path).head.getLen val size_per = math.round(len / partitions.toDouble) ((0 until partitions - 1).map { p => new FileSplit(path, size_per * p, size_per, null) } :+ { val fin = size_per * (partitions - 1) new FileSplit(path, fin, len - fin, null) }).map(WriSer(_)) } } // TODO do we really get much from having this as its own class? consider just making a def csv method in TextInputFormatConf object CSVInputFormatConf { def apply[V](ifc: InputFormatConf[LongWritable, V] { type Split = FileSplit }): InputFormatConf[LongWritable, V] { type IF = ifc.IF type Split = ifc.Split type KExtract = ifc.KExtract type VExtract = ifc.VExtract } = new InputFormatConf[LongWritable, V] { type IF = ifc.IF type Split = ifc.Split type KExtract = ifc.KExtract type VExtract = ifc.VExtract override val kExtract: KExtract = ifc.kExtract override val vExtract: VExtract = ifc.vExtract override def makeInputFormat() = ifc.makeInputFormat() override def makeSplits(hadoopConf: Configuration) = { val splits = ifc.makeSplits(hadoopConf) splits.headOption.fold(IndexedSeq.empty[WriSer[Split]]) { case WriSer(head) => val rr = createRecordReader(hadoopConf, head) require(rr.nextKeyValue, "csv has no header, first line was empty") val afterHeader = rr.getCurrentKey.get require(rr.nextKeyValue, "first split is empty") WriSer(new FileSplit(head.getPath, afterHeader, head.getLength - afterHeader, null)) +: splits.tail } } } }
Example 27
Source File: DeltaRecordReaderWrapper.scala From connectors with Apache License 2.0 | 5 votes |
package io.delta.hive import org.apache.hadoop.hive.ql.io.parquet.read.ParquetRecordReaderWrapper import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorConverters import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoFactory import org.apache.hadoop.io.ArrayWritable import org.apache.hadoop.io.NullWritable import org.apache.hadoop.io.Writable import org.apache.hadoop.mapred.JobConf import org.apache.hadoop.mapred.Reporter import org.apache.parquet.hadoop.ParquetInputFormat import org.slf4j.LoggerFactory private def insertPartitionValues(value: ArrayWritable): Unit = { val valueArray = value.get() var i = 0 val n = partitionValues.length // Using while loop for better performance since this method is called for each row. while (i < n) { val partition = partitionValues(i) // The schema of `valueArray` is the Hive schema, and it's the same as the Delta // schema since we have verified it in `DeltaInputFormat`. Hence, the position of a partition // column in `valueArray` is the same as its position in Delta schema. valueArray(partition._1) = partition._2 i += 1 } } }
Example 28
Source File: PartitionColumnInfo.scala From connectors with Apache License 2.0 | 5 votes |
package io.delta.hive import java.io.{DataInput, DataOutput} import org.apache.hadoop.io.Writable case class PartitionColumnInfo( var index: Int, var tpe: String, var value: String) extends Writable { def this() { this(0, null, null) } override def write(out: DataOutput): Unit = { out.writeInt(index) out.writeUTF(tpe) out.writeUTF(value) } override def readFields(in: DataInput): Unit = { index = in.readInt() tpe = in.readUTF() value = in.readUTF() } }
Example 29
Source File: BinaryFileRDD.scala From drizzle-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.rdd import org.apache.hadoop.conf.{Configurable, Configuration} import org.apache.hadoop.io.Writable import org.apache.hadoop.mapreduce._ import org.apache.hadoop.mapreduce.task.JobContextImpl import org.apache.spark.{Partition, SparkContext} import org.apache.spark.input.StreamFileInputFormat private[spark] class BinaryFileRDD[T]( sc: SparkContext, inputFormatClass: Class[_ <: StreamFileInputFormat[T]], keyClass: Class[String], valueClass: Class[T], conf: Configuration, minPartitions: Int) extends NewHadoopRDD[String, T](sc, inputFormatClass, keyClass, valueClass, conf) { override def getPartitions: Array[Partition] = { val inputFormat = inputFormatClass.newInstance val conf = getConf inputFormat match { case configurable: Configurable => configurable.setConf(conf) case _ => } val jobContext = new JobContextImpl(conf, jobId) inputFormat.setMinPartitions(jobContext, minPartitions) val rawSplits = inputFormat.getSplits(jobContext).toArray val result = new Array[Partition](rawSplits.size) for (i <- 0 until rawSplits.size) { result(i) = new NewHadoopPartition(id, i, rawSplits(i).asInstanceOf[InputSplit with Writable]) } result } }
Example 30
Source File: SequenceFileRDDFunctions.scala From drizzle-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.rdd import scala.reflect.{classTag, ClassTag} import org.apache.hadoop.io.Writable import org.apache.hadoop.io.compress.CompressionCodec import org.apache.hadoop.mapred.JobConf import org.apache.hadoop.mapred.SequenceFileOutputFormat import org.apache.spark.internal.Logging def saveAsSequenceFile( path: String, codec: Option[Class[_ <: CompressionCodec]] = None): Unit = self.withScope { def anyToWritable[U <% Writable](u: U): Writable = u // TODO We cannot force the return type of `anyToWritable` be same as keyWritableClass and // valueWritableClass at the compile time. To implement that, we need to add type parameters to // SequenceFileRDDFunctions. however, SequenceFileRDDFunctions is a public class so it will be a // breaking change. val convertKey = self.keyClass != keyWritableClass val convertValue = self.valueClass != valueWritableClass logInfo("Saving as sequence file of type (" + keyWritableClass.getSimpleName + "," + valueWritableClass.getSimpleName + ")" ) val format = classOf[SequenceFileOutputFormat[Writable, Writable]] val jobConf = new JobConf(self.context.hadoopConfiguration) if (!convertKey && !convertValue) { self.saveAsHadoopFile(path, keyWritableClass, valueWritableClass, format, jobConf, codec) } else if (!convertKey && convertValue) { self.map(x => (x._1, anyToWritable(x._2))).saveAsHadoopFile( path, keyWritableClass, valueWritableClass, format, jobConf, codec) } else if (convertKey && !convertValue) { self.map(x => (anyToWritable(x._1), x._2)).saveAsHadoopFile( path, keyWritableClass, valueWritableClass, format, jobConf, codec) } else if (convertKey && convertValue) { self.map(x => (anyToWritable(x._1), anyToWritable(x._2))).saveAsHadoopFile( path, keyWritableClass, valueWritableClass, format, jobConf, codec) } } }
Example 31
Source File: WholeTextFileRDD.scala From drizzle-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.rdd import org.apache.hadoop.conf.{Configurable, Configuration} import org.apache.hadoop.io.{Text, Writable} import org.apache.hadoop.mapreduce.InputSplit import org.apache.hadoop.mapreduce.task.JobContextImpl import org.apache.spark.{Partition, SparkContext} import org.apache.spark.input.WholeTextFileInputFormat private[spark] class WholeTextFileRDD( sc : SparkContext, inputFormatClass: Class[_ <: WholeTextFileInputFormat], keyClass: Class[Text], valueClass: Class[Text], conf: Configuration, minPartitions: Int) extends NewHadoopRDD[Text, Text](sc, inputFormatClass, keyClass, valueClass, conf) { override def getPartitions: Array[Partition] = { val inputFormat = inputFormatClass.newInstance val conf = getConf inputFormat match { case configurable: Configurable => configurable.setConf(conf) case _ => } val jobContext = new JobContextImpl(conf, jobId) inputFormat.setMinPartitions(jobContext, minPartitions) val rawSplits = inputFormat.getSplits(jobContext).toArray val result = new Array[Partition](rawSplits.size) for (i <- 0 until rawSplits.size) { result(i) = new NewHadoopPartition(id, i, rawSplits(i).asInstanceOf[InputSplit with Writable]) } result } }