org.apache.hadoop.mapred.TextInputFormat Scala Examples

The following examples show how to use org.apache.hadoop.mapred.TextInputFormat. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
Example 1
Source File: CreateHiveTableAsSelectCommand.scala    From drizzle-spark   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.sql.hive.execution

import scala.util.control.NonFatal

import org.apache.spark.sql.{AnalysisException, Row, SparkSession}
import org.apache.spark.sql.catalyst.catalog.CatalogTable
import org.apache.spark.sql.catalyst.plans.logical.{InsertIntoTable, LogicalPlan}
import org.apache.spark.sql.execution.command.RunnableCommand
import org.apache.spark.sql.hive.MetastoreRelation



case class CreateHiveTableAsSelectCommand(
    tableDesc: CatalogTable,
    query: LogicalPlan,
    ignoreIfExists: Boolean)
  extends RunnableCommand {

  private val tableIdentifier = tableDesc.identifier

  override def innerChildren: Seq[LogicalPlan] = Seq(query)

  override def run(sparkSession: SparkSession): Seq[Row] = {
    lazy val metastoreRelation: MetastoreRelation = {
      import org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
      import org.apache.hadoop.hive.serde2.`lazy`.LazySimpleSerDe
      import org.apache.hadoop.io.Text
      import org.apache.hadoop.mapred.TextInputFormat

      val withFormat =
        tableDesc.withNewStorage(
          inputFormat =
            tableDesc.storage.inputFormat.orElse(Some(classOf[TextInputFormat].getName)),
          outputFormat =
            tableDesc.storage.outputFormat
              .orElse(Some(classOf[HiveIgnoreKeyTextOutputFormat[Text, Text]].getName)),
          serde = tableDesc.storage.serde.orElse(Some(classOf[LazySimpleSerDe].getName)),
          compressed = tableDesc.storage.compressed)

      val withSchema = if (withFormat.schema.isEmpty) {
        // Hive doesn't support specifying the column list for target table in CTAS
        // However we don't think SparkSQL should follow that.
        tableDesc.copy(schema = query.output.toStructType)
      } else {
        withFormat
      }

      sparkSession.sessionState.catalog.createTable(withSchema, ignoreIfExists = false)

      // Get the Metastore Relation
      sparkSession.sessionState.catalog.lookupRelation(tableIdentifier) match {
        case r: MetastoreRelation => r
      }
    }
    // TODO ideally, we should get the output data ready first and then
    // add the relation into catalog, just in case of failure occurs while data
    // processing.
    if (sparkSession.sessionState.catalog.tableExists(tableIdentifier)) {
      if (ignoreIfExists) {
        // table already exists, will do nothing, to keep consistent with Hive
      } else {
        throw new AnalysisException(s"$tableIdentifier already exists.")
      }
    } else {
      try {
        sparkSession.sessionState.executePlan(InsertIntoTable(
          metastoreRelation, Map(), query, overwrite = true, ifNotExists = false)).toRdd
      } catch {
        case NonFatal(e) =>
          // drop the created table.
          sparkSession.sessionState.catalog.dropTable(tableIdentifier, ignoreIfNotExists = true,
            purge = false)
          throw e
      }
    }

    Seq.empty[Row]
  }

  override def argString: String = {
    s"[Database:${tableDesc.database}}, " +
    s"TableName: ${tableDesc.identifier.table}, " +
    s"InsertIntoHiveTable]"
  }
} 
Example 2
Source File: L9-11CollabFilteringPreprocessing.scala    From prosparkstreaming   with Apache License 2.0 5 votes vote down vote up
package org.apress.prospark

import org.apache.hadoop.io.LongWritable
import org.apache.hadoop.io.Text
import org.apache.hadoop.mapred.FileSplit
import org.apache.hadoop.mapred.TextInputFormat
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.rdd.HadoopRDD
import org.apache.spark.rdd.RDD.rddToPairRDDFunctions

import com.google.common.io.Files

object CollabFilteringPreprocessingApp {

  def main(args: Array[String]) {
    if (args.length != 3) {
      System.err.println(
        "Usage: CollabFilteringPreprocessingApp <appname> <inputpath> <outputpath>")
      System.exit(1)
    }
    val Seq(appName, iPath, oPath) = args.toSeq

    val conf = new SparkConf()
      .setAppName(appName)
      .setJars(SparkContext.jarOfClass(this.getClass).toSeq)

    val delim = " "

    val sc = new SparkContext(conf)
    sc.hadoopFile(iPath, classOf[TextInputFormat], classOf[LongWritable], classOf[Text], sc.defaultMinPartitions)
      .asInstanceOf[HadoopRDD[LongWritable, Text]]
      .mapPartitionsWithInputSplit((iSplit, iter) =>
        iter.map(splitAndLine => (Files.getNameWithoutExtension(iSplit.asInstanceOf[FileSplit].getPath.toString), splitAndLine._2.toString.split(" ")(1))))
      .filter(r => r._2 != "0")
      .map(r => ((r._1, r._2), 1))
      .reduceByKey(_ + _)
      .map(r => r._1._1.replace("subject", "") + delim + r._1._2 + delim + r._2)
      .sample(false, 0.7)
      .coalesce(1)
      .saveAsTextFile(oPath)
  }
} 
Example 3
Source File: L9-13FPMiningPreprocessing.scala    From prosparkstreaming   with Apache License 2.0 5 votes vote down vote up
package org.apress.prospark

import org.apache.hadoop.io.LongWritable
import org.apache.hadoop.io.Text
import org.apache.hadoop.mapred.FileSplit
import org.apache.hadoop.mapred.TextInputFormat
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.rdd.HadoopRDD
import org.apache.spark.rdd.RDD.rddToPairRDDFunctions

import com.google.common.io.Files

object FPMiningPreprocessingApp {

  def main(args: Array[String]) {
    if (args.length != 3) {
      System.err.println(
        "Usage: FPMiningPreprocessingApp <appname> <inputpath> <outputpath>")
      System.exit(1)
    }
    val Seq(appName, iPath, oPath) = args.toSeq

    val conf = new SparkConf()
      .setAppName(appName)
      .setJars(SparkContext.jarOfClass(this.getClass).toSeq)

    val delim = " "

    val sc = new SparkContext(conf)
    sc.hadoopFile(iPath, classOf[TextInputFormat], classOf[LongWritable], classOf[Text], sc.defaultMinPartitions)
      .asInstanceOf[HadoopRDD[LongWritable, Text]]
      .mapPartitionsWithInputSplit((iSplit, iter) =>
        iter.map(splitAndLine => (Files.getNameWithoutExtension(iSplit.asInstanceOf[FileSplit].getPath.toString), splitAndLine._2.toString.split(" ")(1))))
      .filter(r => r._2 != "0")
      .map(r => (r._1, r._2))
      .distinct()
      .groupByKey()
      .map(r => r._2.mkString(" "))
      .sample(false, 0.7)
      .coalesce(1)
      .saveAsTextFile(oPath)
  }
} 
Example 4
Source File: CreateHiveTableAsSelectCommand.scala    From sparkoscope   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.sql.hive.execution

import scala.util.control.NonFatal

import org.apache.spark.sql.{AnalysisException, Row, SparkSession}
import org.apache.spark.sql.catalyst.catalog.CatalogTable
import org.apache.spark.sql.catalyst.plans.logical.{InsertIntoTable, LogicalPlan, OverwriteOptions}
import org.apache.spark.sql.execution.command.RunnableCommand
import org.apache.spark.sql.hive.MetastoreRelation



case class CreateHiveTableAsSelectCommand(
    tableDesc: CatalogTable,
    query: LogicalPlan,
    ignoreIfExists: Boolean)
  extends RunnableCommand {

  private val tableIdentifier = tableDesc.identifier

  override def innerChildren: Seq[LogicalPlan] = Seq(query)

  override def run(sparkSession: SparkSession): Seq[Row] = {
    lazy val metastoreRelation: MetastoreRelation = {
      import org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
      import org.apache.hadoop.hive.serde2.`lazy`.LazySimpleSerDe
      import org.apache.hadoop.io.Text
      import org.apache.hadoop.mapred.TextInputFormat

      val withFormat =
        tableDesc.withNewStorage(
          inputFormat =
            tableDesc.storage.inputFormat.orElse(Some(classOf[TextInputFormat].getName)),
          outputFormat =
            tableDesc.storage.outputFormat
              .orElse(Some(classOf[HiveIgnoreKeyTextOutputFormat[Text, Text]].getName)),
          serde = tableDesc.storage.serde.orElse(Some(classOf[LazySimpleSerDe].getName)),
          compressed = tableDesc.storage.compressed)

      val withSchema = if (withFormat.schema.isEmpty) {
        // Hive doesn't support specifying the column list for target table in CTAS
        // However we don't think SparkSQL should follow that.
        tableDesc.copy(schema = query.output.toStructType)
      } else {
        withFormat
      }

      sparkSession.sessionState.catalog.createTable(withSchema, ignoreIfExists = false)

      // Get the Metastore Relation
      sparkSession.sessionState.catalog.lookupRelation(tableIdentifier) match {
        case r: MetastoreRelation => r
      }
    }
    // TODO ideally, we should get the output data ready first and then
    // add the relation into catalog, just in case of failure occurs while data
    // processing.
    if (sparkSession.sessionState.catalog.tableExists(tableIdentifier)) {
      if (ignoreIfExists) {
        // table already exists, will do nothing, to keep consistent with Hive
      } else {
        throw new AnalysisException(s"$tableIdentifier already exists.")
      }
    } else {
      try {
        sparkSession.sessionState.executePlan(InsertIntoTable(
          metastoreRelation, Map(), query, overwrite = OverwriteOptions(true),
          ifNotExists = false)).toRdd
      } catch {
        case NonFatal(e) =>
          // drop the created table.
          sparkSession.sessionState.catalog.dropTable(tableIdentifier, ignoreIfNotExists = true,
            purge = false)
          throw e
      }
    }

    Seq.empty[Row]
  }

  override def argString: String = {
    s"[Database:${tableDesc.database}}, " +
    s"TableName: ${tableDesc.identifier.table}, " +
    s"InsertIntoHiveTable]"
  }
} 
Example 5
Source File: CreateHiveTableAsSelectCommand.scala    From multi-tenancy-spark   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.sql.hive.execution

import scala.util.control.NonFatal

import org.apache.spark.sql.{AnalysisException, Dataset, Row, SparkSession}
import org.apache.spark.sql.catalyst.catalog.CatalogTable
import org.apache.spark.sql.catalyst.plans.logical.{InsertIntoTable, LogicalPlan, OverwriteOptions}
import org.apache.spark.sql.execution.command.RunnableCommand
import org.apache.spark.sql.hive.MetastoreRelation



case class CreateHiveTableAsSelectCommand(
    tableDesc: CatalogTable,
    query: LogicalPlan,
    ignoreIfExists: Boolean)
  extends RunnableCommand {

  private val tableIdentifier = tableDesc.identifier

  override def innerChildren: Seq[LogicalPlan] = Seq(query)

  override def run(sparkSession: SparkSession): Seq[Row] = {
    lazy val metastoreRelation: MetastoreRelation = {
      import org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
      import org.apache.hadoop.hive.serde2.`lazy`.LazySimpleSerDe
      import org.apache.hadoop.io.Text
      import org.apache.hadoop.mapred.TextInputFormat

      val withFormat =
        tableDesc.withNewStorage(
          inputFormat =
            tableDesc.storage.inputFormat.orElse(Some(classOf[TextInputFormat].getName)),
          outputFormat =
            tableDesc.storage.outputFormat
              .orElse(Some(classOf[HiveIgnoreKeyTextOutputFormat[Text, Text]].getName)),
          serde = tableDesc.storage.serde.orElse(Some(classOf[LazySimpleSerDe].getName)),
          compressed = tableDesc.storage.compressed)

      val withSchema = if (withFormat.schema.isEmpty) {
        // Hive doesn't support specifying the column list for target table in CTAS
        // However we don't think SparkSQL should follow that.
        tableDesc.copy(schema = query.output.toStructType)
      } else {
        withFormat
      }

      sparkSession.sessionState.catalog.createTable(withSchema, ignoreIfExists = false)

      // Get the Metastore Relation
      sparkSession.sessionState.catalog.lookupRelation(tableIdentifier) match {
        case r: MetastoreRelation => r
      }
    }
    // TODO ideally, we should get the output data ready first and then
    // add the relation into catalog, just in case of failure occurs while data
    // processing.
    if (sparkSession.sessionState.catalog.tableExists(tableIdentifier)) {
      if (ignoreIfExists) {
        // table already exists, will do nothing, to keep consistent with Hive
      } else {
        throw new AnalysisException(s"$tableIdentifier already exists.")
      }
    } else {
      try {
        sparkSession.sessionState.executePlan(InsertIntoTable(
          metastoreRelation, Map(), query, overwrite = OverwriteOptions(true),
          ifNotExists = false)).toRdd
      } catch {
        case NonFatal(e) =>
          // drop the created table.
          sparkSession.sessionState.catalog.dropTable(tableIdentifier, ignoreIfNotExists = true,
            purge = false)
          throw e
      }
    }

    Seq.empty[Row]
  }

  override def argString: String = {
    s"[Database:${tableDesc.database}}, " +
    s"TableName: ${tableDesc.identifier.table}, " +
    s"InsertIntoHiveTable]"
  }
} 
Example 6
Source File: CreateTableAsSelect.scala    From iolap   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.sql.hive.execution

import org.apache.spark.annotation.Experimental
import org.apache.spark.sql.{AnalysisException, SQLContext}
import org.apache.spark.sql.catalyst.expressions.Row
import org.apache.spark.sql.catalyst.plans.logical.{InsertIntoTable, LogicalPlan}
import org.apache.spark.sql.execution.RunnableCommand
import org.apache.spark.sql.hive.client.{HiveTable, HiveColumn}
import org.apache.spark.sql.hive.{HiveContext, MetastoreRelation, HiveMetastoreTypes}


private[hive]
case class CreateTableAsSelect(
    tableDesc: HiveTable,
    query: LogicalPlan,
    allowExisting: Boolean)
  extends RunnableCommand {

  def database: String = tableDesc.database
  def tableName: String = tableDesc.name

  override def run(sqlContext: SQLContext): Seq[Row] = {
    val hiveContext = sqlContext.asInstanceOf[HiveContext]
    lazy val metastoreRelation: MetastoreRelation = {
      import org.apache.hadoop.hive.serde2.`lazy`.LazySimpleSerDe
      import org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
      import org.apache.hadoop.io.Text
      import org.apache.hadoop.mapred.TextInputFormat

      val withSchema =
        tableDesc.copy(
          schema =
            query.output.map(c =>
              HiveColumn(c.name, HiveMetastoreTypes.toMetastoreType(c.dataType), null)),
          inputFormat =
            tableDesc.inputFormat.orElse(Some(classOf[TextInputFormat].getName)),
          outputFormat =
            tableDesc.outputFormat
              .orElse(Some(classOf[HiveIgnoreKeyTextOutputFormat[Text, Text]].getName)),
          serde = tableDesc.serde.orElse(Some(classOf[LazySimpleSerDe].getName())))
      hiveContext.catalog.client.createTable(withSchema)

      // Get the Metastore Relation
      hiveContext.catalog.lookupRelation(Seq(database, tableName), None) match {
        case r: MetastoreRelation => r
      }
    }
    // TODO ideally, we should get the output data ready first and then
    // add the relation into catalog, just in case of failure occurs while data
    // processing.
    if (hiveContext.catalog.tableExists(Seq(database, tableName))) {
      if (allowExisting) {
        // table already exists, will do nothing, to keep consistent with Hive
      } else {
        throw new AnalysisException(s"$database.$tableName already exists.")
      }
    } else {
      hiveContext.executePlan(InsertIntoTable(metastoreRelation, Map(), query, true, false)).toRdd
    }

    Seq.empty[Row]
  }

  override def argString: String = {
    s"[Database:$database, TableName: $tableName, InsertIntoHiveTable]\n" + query.toString
  }
} 
Example 7
Source File: HBaseBulkPutExampleFromFile.scala    From SparkOnHBase   with Apache License 2.0 5 votes vote down vote up
package org.apache.hadoop.hbase.spark.example.hbasecontext

import org.apache.hadoop.hbase.spark.HBaseContext
import org.apache.spark.SparkContext
import org.apache.hadoop.hbase.{TableName, HBaseConfiguration}
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.mapred.TextInputFormat
import org.apache.hadoop.io.LongWritable
import org.apache.hadoop.io.Text
import org.apache.spark.SparkConf


object HBaseBulkPutExampleFromFile {
  def main(args: Array[String]) {
    if (args.length < 3) {
      println("HBaseBulkPutExampleFromFile {tableName} {columnFamily} {inputFile}")
      return
    }

    val tableName = args(0)
    val columnFamily = args(1)
    val inputFile = args(2)

    val sparkConf = new SparkConf().setAppName("HBaseBulkPutExampleFromFile " +
      tableName + " " + columnFamily + " " + inputFile)
    val sc = new SparkContext(sparkConf)

    try {
      var rdd = sc.hadoopFile(
        inputFile,
        classOf[TextInputFormat],
        classOf[LongWritable],
        classOf[Text]).map(v => {
        System.out.println("reading-" + v._2.toString)
        v._2.toString
      })

      val conf = HBaseConfiguration.create()

      val hbaseContext = new HBaseContext(sc, conf)
      hbaseContext.bulkPut[String](rdd,
        TableName.valueOf(tableName),
        (putRecord) => {
          System.out.println("hbase-" + putRecord)
          val put = new Put(Bytes.toBytes("Value- " + putRecord))
          put.addColumn(Bytes.toBytes("c"), Bytes.toBytes("1"),
            Bytes.toBytes(putRecord.length()))
          put
        });
    } finally {
      sc.stop()
    }
  }
} 
Example 8
Source File: TextFileOverwrite.scala    From spark_helper   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark

import org.apache.spark.rdd.{RDD, HadoopRDD}
import org.apache.spark.util.SerializableConfiguration
import org.apache.hadoop.mapred.{FileInputFormat, JobConf, TextInputFormat}
import org.apache.hadoop.io.{LongWritable, Text}
import org.apache.hadoop.fs.Path

object TextFileOverwrite {

  def textFile(
      paths: Seq[String],
      minPartitions: Int,
      sc: SparkContext
  ): RDD[String] = {

    

    val confBroadcast =
      sc.broadcast(new SerializableConfiguration(sc.hadoopConfiguration))

    val setInputPathsFunc =
      (jobConf: JobConf) =>
        FileInputFormat.setInputPaths(jobConf, paths.map(p => new Path(p)): _*)

    new HadoopRDD(
      sc,
      confBroadcast,
      Some(setInputPathsFunc),
      classOf[TextInputFormat],
      classOf[LongWritable],
      classOf[Text],
      minPartitions
    ).map(pair => pair._2.toString)
  }
} 
Example 9
Source File: CreateTableAsSelect.scala    From BigDatalog   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.sql.hive.execution

import org.apache.spark.sql.catalyst.TableIdentifier
import org.apache.spark.sql.catalyst.plans.logical.{InsertIntoTable, LogicalPlan}
import org.apache.spark.sql.execution.RunnableCommand
import org.apache.spark.sql.hive.client.{HiveColumn, HiveTable}
import org.apache.spark.sql.hive.{HiveContext, HiveMetastoreTypes, MetastoreRelation}
import org.apache.spark.sql.{AnalysisException, Row, SQLContext}


private[hive]
case class CreateTableAsSelect(
    tableDesc: HiveTable,
    query: LogicalPlan,
    allowExisting: Boolean)
  extends RunnableCommand {

  val tableIdentifier = TableIdentifier(tableDesc.name, Some(tableDesc.database))

  override def children: Seq[LogicalPlan] = Seq(query)

  override def run(sqlContext: SQLContext): Seq[Row] = {
    val hiveContext = sqlContext.asInstanceOf[HiveContext]
    lazy val metastoreRelation: MetastoreRelation = {
      import org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
      import org.apache.hadoop.hive.serde2.`lazy`.LazySimpleSerDe
      import org.apache.hadoop.io.Text
      import org.apache.hadoop.mapred.TextInputFormat

      val withFormat =
        tableDesc.copy(
          inputFormat =
            tableDesc.inputFormat.orElse(Some(classOf[TextInputFormat].getName)),
          outputFormat =
            tableDesc.outputFormat
              .orElse(Some(classOf[HiveIgnoreKeyTextOutputFormat[Text, Text]].getName)),
          serde = tableDesc.serde.orElse(Some(classOf[LazySimpleSerDe].getName())))

      val withSchema = if (withFormat.schema.isEmpty) {
        // Hive doesn't support specifying the column list for target table in CTAS
        // However we don't think SparkSQL should follow that.
        tableDesc.copy(schema =
        query.output.map(c =>
          HiveColumn(c.name, HiveMetastoreTypes.toMetastoreType(c.dataType), null)))
      } else {
        withFormat
      }

      hiveContext.catalog.client.createTable(withSchema)

      // Get the Metastore Relation
      hiveContext.catalog.lookupRelation(tableIdentifier, None) match {
        case r: MetastoreRelation => r
      }
    }
    // TODO ideally, we should get the output data ready first and then
    // add the relation into catalog, just in case of failure occurs while data
    // processing.
    if (hiveContext.catalog.tableExists(tableIdentifier)) {
      if (allowExisting) {
        // table already exists, will do nothing, to keep consistent with Hive
      } else {
        throw new AnalysisException(s"$tableIdentifier already exists.")
      }
    } else {
      hiveContext.executePlan(InsertIntoTable(metastoreRelation, Map(), query, true, false)).toRdd
    }

    Seq.empty[Row]
  }

  override def argString: String = {
    s"[Database:${tableDesc.database}}, TableName: ${tableDesc.name}, InsertIntoHiveTable]"
  }
} 
Example 10
Source File: HBaseBulkPutExampleFromFile.scala    From hbase-connectors   with Apache License 2.0 5 votes vote down vote up
package org.apache.hadoop.hbase.spark.example.hbasecontext

import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.spark.HBaseContext
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.TableName
import org.apache.hadoop.io.LongWritable
import org.apache.hadoop.io.Text
import org.apache.hadoop.mapred.TextInputFormat
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.yetus.audience.InterfaceAudience


@InterfaceAudience.Private
object HBaseBulkPutExampleFromFile {
  def main(args: Array[String]) {
    if (args.length < 3) {
      println("HBaseBulkPutExampleFromFile {tableName} {columnFamily} {inputFile} are missing an argument")
      return
    }

    val tableName = args(0)
    val columnFamily = args(1)
    val inputFile = args(2)

    val sparkConf = new SparkConf().setAppName("HBaseBulkPutExampleFromFile " +
      tableName + " " + columnFamily + " " + inputFile)
    val sc = new SparkContext(sparkConf)

    try {
      var rdd = sc.hadoopFile(
        inputFile,
        classOf[TextInputFormat],
        classOf[LongWritable],
        classOf[Text]).map(v => {
        System.out.println("reading-" + v._2.toString)
        v._2.toString
      })

      val conf = HBaseConfiguration.create()

      val hbaseContext = new HBaseContext(sc, conf)
      hbaseContext.bulkPut[String](rdd,
        TableName.valueOf(tableName),
        (putRecord) => {
          System.out.println("hbase-" + putRecord)
          val put = new Put(Bytes.toBytes("Value- " + putRecord))
          put.addColumn(Bytes.toBytes("c"), Bytes.toBytes("1"),
            Bytes.toBytes(putRecord.length()))
          put
        });
    } finally {
      sc.stop()
    }
  }
}