org.apache.spark.ml.classification.LogisticRegression Scala Examples
The following examples show how to use org.apache.spark.ml.classification.LogisticRegression.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: NaiveBayes.scala From Scala-and-Spark-for-Big-Data-Analytics with MIT License | 5 votes |
package com.chapter12.NaiveBayes import org.apache.spark.ml.classification.NaiveBayes import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator import org.apache.spark.sql.SparkSession import org.apache.spark.ml.Pipeline; import org.apache.spark.ml.PipelineStage; import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator import org.apache.spark.ml.feature.{HashingTF, Tokenizer} import org.apache.spark.ml.linalg.Vector import org.apache.spark.ml.tuning.{CrossValidator, ParamGridBuilder} object NaiveBayesExample { def main(args: Array[String]): Unit = { // Create the Spark session val spark = SparkSession .builder .master("local[*]") .config("spark.sql.warehouse.dir", "E:/Exp/") .appName(s"OneVsRestExample") .getOrCreate() // Load the data stored in LIBSVM format as a DataFrame. val data = spark.read.format("libsvm").load("C:/Users/rezkar/Downloads/spark-2.1.0-bin-hadoop2.7/data/sample.data") // Split the data into training and test sets (30% held out for testing) val Array(trainingData, validationData) = data.randomSplit(Array(0.75, 0.25), seed = 12345L) // Train a NaiveBayes model. val nb = new NaiveBayes().setSmoothing(0.00001) val model = nb.fit(trainingData) // Select example rows to display. val predictions = model.transform(validationData) predictions.show() // Select (prediction, true label) and compute test error obtain evaluator and compute the classification performnce metrics like accuracy, precision, recall and f1 measure. val evaluator = new BinaryClassificationEvaluator().setLabelCol("label").setMetricName("areaUnderROC") val evaluator1 = new MulticlassClassificationEvaluator().setLabelCol("label").setPredictionCol("prediction").setMetricName("accuracy") val evaluator2 = new MulticlassClassificationEvaluator().setLabelCol("label").setPredictionCol("prediction").setMetricName("weightedPrecision") val evaluator3 = new MulticlassClassificationEvaluator().setLabelCol("label").setPredictionCol("prediction").setMetricName("weightedRecall") val evaluator4 = new MulticlassClassificationEvaluator().setLabelCol("label").setPredictionCol("prediction").setMetricName("f1") // compute the classification accuracy, precision, recall, f1 measure and error on test data. val areaUnderROC = evaluator.evaluate(predictions) val accuracy = evaluator1.evaluate(predictions) val precision = evaluator2.evaluate(predictions) val recall = evaluator3.evaluate(predictions) val f1 = evaluator4.evaluate(predictions) // Print the performance metrics println("areaUnderROC = " + areaUnderROC) println("Accuracy = " + accuracy) println("Precision = " + precision) println("Recall = " + recall) println("F1 = " + f1) println(s"Test Error = ${1 - accuracy}") data.show(20) spark.stop() } }
Example 2
Source File: MulticlassLogisticRegressionWithElasticNetExample.scala From multi-tenancy-spark with Apache License 2.0 | 5 votes |
// scalastyle:off println package org.apache.spark.examples.ml // $example on$ import org.apache.spark.ml.classification.LogisticRegression // $example off$ import org.apache.spark.sql.SparkSession object MulticlassLogisticRegressionWithElasticNetExample { def main(args: Array[String]): Unit = { val spark = SparkSession .builder .appName("MulticlassLogisticRegressionWithElasticNetExample") .getOrCreate() // $example on$ // Load training data val training = spark .read .format("libsvm") .load("data/mllib/sample_multiclass_classification_data.txt") val lr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.3) .setElasticNetParam(0.8) // Fit the model val lrModel = lr.fit(training) // Print the coefficients and intercept for multinomial logistic regression println(s"Coefficients: \n${lrModel.coefficientMatrix}") println(s"Intercepts: ${lrModel.interceptVector}") // $example off$ spark.stop() } } // scalastyle:on println
Example 3
Source File: SimpleTextClassificationPipeline.scala From iolap with Apache License 2.0 | 5 votes |
package org.apache.spark.examples.ml import scala.beans.BeanInfo import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.feature.{HashingTF, Tokenizer} import org.apache.spark.mllib.linalg.Vector import org.apache.spark.sql.{Row, SQLContext} @BeanInfo case class LabeledDocument(id: Long, text: String, label: Double) @BeanInfo case class Document(id: Long, text: String) object SimpleTextClassificationPipeline { def main(args: Array[String]) { val conf = new SparkConf().setAppName("SimpleTextClassificationPipeline") val sc = new SparkContext(conf) val sqlContext = new SQLContext(sc) import sqlContext.implicits._ // Prepare training documents, which are labeled. val training = sc.parallelize(Seq( LabeledDocument(0L, "a b c d e spark", 1.0), LabeledDocument(1L, "b d", 0.0), LabeledDocument(2L, "spark f g h", 1.0), LabeledDocument(3L, "hadoop mapreduce", 0.0))) // Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr. val tokenizer = new Tokenizer() .setInputCol("text") .setOutputCol("words") val hashingTF = new HashingTF() .setNumFeatures(1000) .setInputCol(tokenizer.getOutputCol) .setOutputCol("features") val lr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.001) val pipeline = new Pipeline() .setStages(Array(tokenizer, hashingTF, lr)) // Fit the pipeline to training documents. val model = pipeline.fit(training.toDF()) // Prepare test documents, which are unlabeled. val test = sc.parallelize(Seq( Document(4L, "spark i j k"), Document(5L, "l m n"), Document(6L, "spark hadoop spark"), Document(7L, "apache hadoop"))) // Make predictions on test documents. model.transform(test.toDF()) .select("id", "text", "probability", "prediction") .collect() .foreach { case Row(id: Long, text: String, prob: Vector, prediction: Double) => println(s"($id, $text) --> prob=$prob, prediction=$prediction") } sc.stop() } }
Example 4
Source File: OpLogisticRegressionTest.scala From TransmogrifAI with BSD 3-Clause "New" or "Revised" License | 5 votes |
package com.salesforce.op.stages.impl.classification import com.salesforce.op.features.types._ import com.salesforce.op.stages.impl.PredictionEquality import com.salesforce.op.stages.sparkwrappers.specific.{OpPredictorWrapper, OpPredictorWrapperModel} import com.salesforce.op.test.{OpEstimatorSpec, TestFeatureBuilder} import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel} import org.apache.spark.ml.linalg.Vectors import org.junit.runner.RunWith import org.scalatest.junit.JUnitRunner @RunWith(classOf[JUnitRunner]) class OpLogisticRegressionTest extends OpEstimatorSpec[Prediction, OpPredictorWrapperModel[LogisticRegressionModel], OpPredictorWrapper[LogisticRegression, LogisticRegressionModel]] with PredictionEquality { override def specName: String = Spec[OpLogisticRegression] val (inputData, rawFeature1, feature2) = TestFeatureBuilder("label", "features", Seq[(RealNN, OPVector)]( 1.0.toRealNN -> Vectors.dense(12.0, 4.3, 1.3).toOPVector, 0.0.toRealNN -> Vectors.dense(0.0, 0.3, 0.1).toOPVector, 0.0.toRealNN -> Vectors.dense(1.0, 3.9, 4.3).toOPVector, 1.0.toRealNN -> Vectors.dense(10.0, 1.3, 0.9).toOPVector, 1.0.toRealNN -> Vectors.dense(15.0, 4.7, 1.3).toOPVector, 0.0.toRealNN -> Vectors.dense(0.5, 0.9, 10.1).toOPVector, 1.0.toRealNN -> Vectors.dense(11.5, 2.3, 1.3).toOPVector, 0.0.toRealNN -> Vectors.dense(0.1, 3.3, 0.1).toOPVector ) ) val feature1 = rawFeature1.copy(isResponse = true) val estimator = new OpLogisticRegression().setInput(feature1, feature2) val expectedResult = Seq( Prediction(1.0, Array(-20.88, 20.88), Array(0.0, 1.0)), Prediction(0.0, Array(16.70, -16.7), Array(1.0, 0.0)), Prediction(0.0, Array(22.2, -22.2), Array(1.0, 0.0)), Prediction(1.0, Array(-18.35, 18.35), Array(0.0, 1.0)), Prediction(1.0, Array(-31.46, 31.46), Array(0.0, 1.0)), Prediction(0.0, Array(24.67, -24.67), Array(1.0, 0.0)), Prediction(1.0, Array(-22.07, 22.07), Array(0.0, 1.0)), Prediction(0.0, Array(20.9, -20.9), Array(1.0, 0.0)) ) it should "allow the user to set the desired spark parameters" in { estimator .setRegParam(0.1) .setElasticNetParam(0.1) .setMaxIter(20) estimator.fit(inputData) estimator.predictor.getRegParam shouldBe 0.1 estimator.predictor.getElasticNetParam shouldBe 0.1 estimator.predictor.getMaxIter shouldBe 20 } }
Example 5
Source File: SparkRWrappers.scala From spark1.52 with Apache License 2.0 | 5 votes |
package org.apache.spark.ml.api.r import org.apache.spark.ml.attribute._ import org.apache.spark.ml.feature.RFormula import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel} import org.apache.spark.ml.regression.{LinearRegression, LinearRegressionModel} import org.apache.spark.ml.{Pipeline, PipelineModel} import org.apache.spark.sql.DataFrame private[r] object SparkRWrappers { def fitRModelFormula( value: String, df: DataFrame, family: String, lambda: Double, alpha: Double): PipelineModel = { val formula = new RFormula().setFormula(value) val estimator = family match { case "gaussian" => new LinearRegression() .setRegParam(lambda) .setElasticNetParam(alpha) .setFitIntercept(formula.hasIntercept) case "binomial" => new LogisticRegression() .setRegParam(lambda) .setElasticNetParam(alpha) .setFitIntercept(formula.hasIntercept) } val pipeline = new Pipeline().setStages(Array(formula, estimator)) pipeline.fit(df) } def getModelWeights(model: PipelineModel): Array[Double] = { model.stages.last match { case m: LinearRegressionModel => Array(m.intercept) ++ m.weights.toArray case _: LogisticRegressionModel => throw new UnsupportedOperationException( "No weights available for LogisticRegressionModel") // SPARK-9492 } } def getModelFeatures(model: PipelineModel): Array[String] = { model.stages.last match { case m: LinearRegressionModel => val attrs = AttributeGroup.fromStructField( m.summary.predictions.schema(m.summary.featuresCol)) Array("(Intercept)") ++ attrs.attributes.get.map(_.name.get) case _: LogisticRegressionModel => throw new UnsupportedOperationException( "No features names available for LogisticRegressionModel") // SPARK-9492 } } }
Example 6
import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.feature.{HashingTF, Tokenizer, StringIndexer} import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator} import org.apache.spark.mllib.linalg.Vector import org.apache.spark.sql.{Row, SQLContext} import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics import breeze.linalg._ import breeze.plot._ import org.jfree.chart.axis.NumberTickUnit object ROC extends App { val conf = new SparkConf().setAppName("ROC") val sc = new SparkContext(conf) val sqlContext = new SQLContext(sc) import sqlContext._ import sqlContext.implicits._ val transformedTest = sqlContext.read.parquet("transformedTest.parquet") val labelScores = transformedTest.select("probability", "label").map { case Row(probability:Vector, label:Double) => (probability(1), label) } val bm = new BinaryClassificationMetrics(labelScores, 300) val roc = bm.roc.collect roc.foreach { println } val falsePositives = roc.map { _._1 } val truePositives = roc.map { _._2 } val f = Figure() val p = f.subplot(0) p += plot(falsePositives, truePositives) p.xlabel = "false positives" p.ylabel = "true positives" p.xlim = (0.0, 0.1) p.xaxis.setTickUnit(new NumberTickUnit(0.01)) p.yaxis.setTickUnit(new NumberTickUnit(0.1)) f.refresh f.saveas("roc.png") }
Example 7
Source File: LogisticRegressionDemo.scala From s4ds with Apache License 2.0 | 5 votes |
import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator import org.apache.spark.ml.feature.{HashingTF, Tokenizer, StringIndexer} import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator} import org.apache.spark.mllib.linalg.Vector import org.apache.spark.sql.{Row, SQLContext} import org.apache.spark.sql.SaveMode case class LabelledDocument(fileName:String, text:String, category:String) object LogisticRegressionDemo extends App { val conf = new SparkConf().setAppName("LrTest") val sc = new SparkContext(conf) val sqlContext = new SQLContext(sc) import sqlContext._ import sqlContext.implicits._ val spamText = sc.wholeTextFiles("spam/*") val hamText = sc.wholeTextFiles("ham/*") val spamDocuments = spamText.map { case (fileName, text) => LabelledDocument(fileName, text, "spam") } val hamDocuments = hamText.map { case (fileName, text) => LabelledDocument(fileName, text, "ham") } val documentsDF = spamDocuments.union(hamDocuments).toDF documentsDF.persist val Array(trainDF, testDF) = documentsDF.randomSplit(Array(0.7, 0.3)) val indexer = new StringIndexer().setInputCol("category").setOutputCol("label") val tokenizer = new Tokenizer().setInputCol("text").setOutputCol("words") val hasher = new HashingTF().setInputCol("words").setOutputCol("features") val lr = new LogisticRegression().setMaxIter(50).setRegParam(0.0) val pipeline = new Pipeline().setStages(Array(indexer, tokenizer, hasher, lr)) val model = pipeline.fit(trainDF) val transformedTrain = model.transform(trainDF) transformedTrain.persist val transformedTest = model.transform(testDF) transformedTest.persist println("in sample misclassified:", transformedTrain.filter($"prediction" !== $"label").count, " / ",transformedTrain.count) println("out sample misclassified:", transformedTest.filter($"prediction" !== $"label").count, " / ",transformedTest.count) transformedTrain.select("fileName", "label", "prediction", "probability") .write.mode(SaveMode.Overwrite).parquet("transformedTrain.parquet") transformedTest.select("fileName", "label", "prediction", "probability") .write.mode(SaveMode.Overwrite).parquet("transformedTest.parquet") }
Example 8
Source File: LogisticRegressionWithElasticNetExample.scala From BigDatalog with Apache License 2.0 | 5 votes |
// scalastyle:off println package org.apache.spark.examples.ml // $example on$ import org.apache.spark.ml.classification.LogisticRegression // $example off$ import org.apache.spark.sql.SQLContext import org.apache.spark.{SparkConf, SparkContext} object LogisticRegressionWithElasticNetExample { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("LogisticRegressionWithElasticNetExample") val sc = new SparkContext(conf) val sqlCtx = new SQLContext(sc) // $example on$ // Load training data val training = sqlCtx.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") val lr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.3) .setElasticNetParam(0.8) // Fit the model val lrModel = lr.fit(training) // Print the coefficients and intercept for logistic regression println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}") // $example off$ sc.stop() } } // scalastyle:on println
Example 9
Source File: SimpleTextClassificationPipeline.scala From BigDatalog with Apache License 2.0 | 5 votes |
// scalastyle:off println package org.apache.spark.examples.ml import scala.beans.BeanInfo import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.feature.{HashingTF, Tokenizer} import org.apache.spark.mllib.linalg.Vector import org.apache.spark.sql.{Row, SQLContext} @BeanInfo case class LabeledDocument(id: Long, text: String, label: Double) @BeanInfo case class Document(id: Long, text: String) object SimpleTextClassificationPipeline { def main(args: Array[String]) { val conf = new SparkConf().setAppName("SimpleTextClassificationPipeline") val sc = new SparkContext(conf) val sqlContext = new SQLContext(sc) import sqlContext.implicits._ // Prepare training documents, which are labeled. val training = sc.parallelize(Seq( LabeledDocument(0L, "a b c d e spark", 1.0), LabeledDocument(1L, "b d", 0.0), LabeledDocument(2L, "spark f g h", 1.0), LabeledDocument(3L, "hadoop mapreduce", 0.0))) // Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr. val tokenizer = new Tokenizer() .setInputCol("text") .setOutputCol("words") val hashingTF = new HashingTF() .setNumFeatures(1000) .setInputCol(tokenizer.getOutputCol) .setOutputCol("features") val lr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.001) val pipeline = new Pipeline() .setStages(Array(tokenizer, hashingTF, lr)) // Fit the pipeline to training documents. val model = pipeline.fit(training.toDF()) // Prepare test documents, which are unlabeled. val test = sc.parallelize(Seq( Document(4L, "spark i j k"), Document(5L, "l m n"), Document(6L, "spark hadoop spark"), Document(7L, "apache hadoop"))) // Make predictions on test documents. model.transform(test.toDF()) .select("id", "text", "probability", "prediction") .collect() .foreach { case Row(id: Long, text: String, prob: Vector, prediction: Double) => println(s"($id, $text) --> prob=$prob, prediction=$prediction") } sc.stop() } } // scalastyle:on println
Example 10
Source File: SparkRWrappers.scala From BigDatalog with Apache License 2.0 | 5 votes |
package org.apache.spark.ml.api.r import org.apache.spark.ml.attribute._ import org.apache.spark.ml.feature.RFormula import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel} import org.apache.spark.ml.regression.{LinearRegression, LinearRegressionModel} import org.apache.spark.ml.{Pipeline, PipelineModel} import org.apache.spark.sql.DataFrame private[r] object SparkRWrappers { def fitRModelFormula( value: String, df: DataFrame, family: String, lambda: Double, alpha: Double, standardize: Boolean, solver: String): PipelineModel = { val formula = new RFormula().setFormula(value) val estimator = family match { case "gaussian" => new LinearRegression() .setRegParam(lambda) .setElasticNetParam(alpha) .setFitIntercept(formula.hasIntercept) .setStandardization(standardize) .setSolver(solver) case "binomial" => new LogisticRegression() .setRegParam(lambda) .setElasticNetParam(alpha) .setFitIntercept(formula.hasIntercept) .setStandardization(standardize) } val pipeline = new Pipeline().setStages(Array(formula, estimator)) pipeline.fit(df) } def getModelCoefficients(model: PipelineModel): Array[Double] = { model.stages.last match { case m: LinearRegressionModel => { val coefficientStandardErrorsR = Array(m.summary.coefficientStandardErrors.last) ++ m.summary.coefficientStandardErrors.dropRight(1) val tValuesR = Array(m.summary.tValues.last) ++ m.summary.tValues.dropRight(1) val pValuesR = Array(m.summary.pValues.last) ++ m.summary.pValues.dropRight(1) if (m.getFitIntercept) { Array(m.intercept) ++ m.coefficients.toArray ++ coefficientStandardErrorsR ++ tValuesR ++ pValuesR } else { m.coefficients.toArray ++ coefficientStandardErrorsR ++ tValuesR ++ pValuesR } } case m: LogisticRegressionModel => { if (m.getFitIntercept) { Array(m.intercept) ++ m.coefficients.toArray } else { m.coefficients.toArray } } } } def getModelDevianceResiduals(model: PipelineModel): Array[Double] = { model.stages.last match { case m: LinearRegressionModel => m.summary.devianceResiduals case m: LogisticRegressionModel => throw new UnsupportedOperationException( "No deviance residuals available for LogisticRegressionModel") } } def getModelFeatures(model: PipelineModel): Array[String] = { model.stages.last match { case m: LinearRegressionModel => val attrs = AttributeGroup.fromStructField( m.summary.predictions.schema(m.summary.featuresCol)) if (m.getFitIntercept) { Array("(Intercept)") ++ attrs.attributes.get.map(_.name.get) } else { attrs.attributes.get.map(_.name.get) } case m: LogisticRegressionModel => val attrs = AttributeGroup.fromStructField( m.summary.predictions.schema(m.summary.featuresCol)) if (m.getFitIntercept) { Array("(Intercept)") ++ attrs.attributes.get.map(_.name.get) } else { attrs.attributes.get.map(_.name.get) } } } def getModelName(model: PipelineModel): String = { model.stages.last match { case m: LinearRegressionModel => "LinearRegressionModel" case m: LogisticRegressionModel => "LogisticRegressionModel" } } }
Example 11
Source File: ACMEModel.scala From cdsw-simple-serving with Apache License 2.0 | 5 votes |
// Don't execute these lines in the workbench -- skip to "Start workbench session" package acme import org.apache.spark.ml.PipelineModel import com.cloudera.datascience.cdsw.acme.ACMEData import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel} import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit} import org.apache.spark.ml.{Pipeline, PipelineModel} import scala.util.Random // Read and cache training data prepared from acme-dataeng: val training = ACMEData.readData() training.cache() training.show() // Build a logistic regression model, val assembler = new VectorAssembler(). setInputCols(training.columns.filter(_ != "Occupancy")). setOutputCol("featureVec") val lr = new LogisticRegression(). setFeaturesCol("featureVec"). setLabelCol("Occupancy"). setRawPredictionCol("rawPrediction") val pipeline = new Pipeline().setStages(Array(assembler, lr)) // and tune that model: val paramGrid = new ParamGridBuilder(). addGrid(lr.regParam, Seq(0.00001, 0.001, 0.1)). addGrid(lr.elasticNetParam, Seq(1.0)). build() val eval = new BinaryClassificationEvaluator(). setLabelCol("Occupancy"). setRawPredictionCol("rawPrediction") val validator = new TrainValidationSplit(). setSeed(Random.nextLong()). setEstimator(pipeline). setEvaluator(eval). setEstimatorParamMaps(paramGrid). setTrainRatio(0.9) val validatorModel = validator.fit(training) val pipelineModel = validatorModel.bestModel.asInstanceOf[PipelineModel] val lrModel = pipelineModel.stages.last.asInstanceOf[LogisticRegressionModel] // Logistic regression model parameters: training.columns.zip(lrModel.coefficients.toArray).foreach(println) // Model hyperparameters: lrModel.getElasticNetParam lrModel.getRegParam // Validation metric (accuracy): validatorModel.validationMetrics.max pipelineModel // End workbench session } }
Example 12
Source File: OneHotEncoderDemo2.scala From Scala-and-Spark-for-Big-Data-Analytics with MIT License | 5 votes |
package com.chapter11.SparkMachineLearning import org.apache.spark.sql.SparkSession import org.apache.spark.ml.feature.{ OneHotEncoder, StringIndexer } import org.apache.spark.sql.types._ import org.apache.spark.sql._ import org.apache.spark.sql.functions.year import org.apache.spark.ml.{ Pipeline, PipelineStage } import org.apache.spark.ml.classification.{ LogisticRegression, LogisticRegressionModel } import org.apache.spark.ml.feature.StringIndexer import org.apache.spark.sql.{ DataFrame, SparkSession } import scala.collection.mutable import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator object OneHotEncoderDemo2 { def main(args: Array[String]): Unit = { val spark = SparkSession .builder .master("local[*]") .config("spark.sql.warehouse.dir", "E:/Exp/") .appName(s"OneVsRestExample") .getOrCreate() val df = spark.createDataFrame( Seq((0, "Jason", "Germany"), (1, "David", "France"), (2, "Martin", "Spain"), (3, "Jason", "USA"), (4, "Daiel", "UK"), (5, "Moahmed", "Bangladesh"), (6, "David", "Ireland"), (7, "Jason", "Netherlands"))).toDF("id", "name", "address") df.show(false) val indexer = new StringIndexer() .setInputCol("name") .setOutputCol("categoryIndex") .fit(df) val indexed = indexer.transform(df) val encoder = new OneHotEncoder() .setInputCol("categoryIndex") .setOutputCol("categoryVec") val encoded = encoder.transform(indexed) encoded.show() spark.stop() } }
Example 13
Source File: StringIndexerDemo.scala From Scala-and-Spark-for-Big-Data-Analytics with MIT License | 5 votes |
package com.chapter11.SparkMachineLearning import org.apache.spark.sql.SparkSession import org.apache.spark.ml.feature.{ OneHotEncoder, StringIndexer } import org.apache.spark.sql.types._ import org.apache.spark.sql._ import org.apache.spark.sql.functions.year import org.apache.spark.ml.{ Pipeline, PipelineStage } import org.apache.spark.ml.classification.{ LogisticRegression, LogisticRegressionModel } import org.apache.spark.ml.feature.StringIndexer import org.apache.spark.sql.{ DataFrame, SparkSession } import scala.collection.mutable import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator import org.apache.spark.sql._ import org.apache.spark.sql.SQLContext object StringIndexerDemo { def main(args: Array[String]): Unit = { val spark = SparkSession .builder .master("local[*]") .config("spark.sql.warehouse.dir", "E:/Exp/") .appName(s"OneVsRestExample") .getOrCreate() val df = spark.createDataFrame( Seq((0, "Jason", "Germany"), (1, "David", "France"), (2, "Martin", "Spain"), (3, "Jason", "USA"), (4, "Daiel", "UK"), (5, "Moahmed", "Bangladesh"), (6, "David", "Ireland"), (7, "Jason", "Netherlands"))).toDF("id", "name", "address") df.show(false) val indexer = new StringIndexer() .setInputCol("name") .setOutputCol("label") .fit(df) val indexed = indexer.transform(df) indexed.show(false) spark.stop() } }
Example 14
Source File: LogisticRegressionRecommender.scala From wordpress-posts-recommender with Apache License 2.0 | 5 votes |
package wordpressworkshop import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel} import org.apache.spark.ml.param.ParamMap import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics import org.apache.spark.mllib.linalg.Vector import org.apache.spark.rdd.RDD import org.apache.spark.sql.DataFrame case class LogisticRegressionRecommender(training: DataFrame) { val lr = new LogisticRegression() val paramMap = ParamMap(lr.maxIter -> 20) .put(lr.regParam -> 0.01) .put(lr.probabilityCol -> "probability") val model: LogisticRegressionModel = lr.fit(training, paramMap) def metrics(testData: DataFrame) = { val predictionAndLabels: RDD[(Double, Double)] = model.transform(testData).map(row => row.getAs[Vector]("probability")(1) -> row.getAs[Double]("label")) new BinaryClassificationMetrics(predictionAndLabels) } def likeScores(testData: DataFrame): RDD[(Long, Long, Double)] = model.transform(testData) .map(row => (row.getAs[Long]("userId"), row.getAs[Long]("postId"), row.getAs[Vector]("probability")(1))) }
Example 15
Source File: TitanicLogisticRegression.scala From spark-spec with MIT License | 5 votes |
package com.github.mrpowers.spark.spec.ml.classification import com.github.mrpowers.spark.spec.sql.SparkSessionWrapper import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel} import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler} import org.apache.spark.sql.DataFrame object TitanicLogisticRegression extends SparkSessionWrapper { def withVectorizedFeatures( featureColNames: Array[String] = Array("Gender", "Age", "SibSp", "Parch", "Fare"), outputColName: String = "features" )(df: DataFrame): DataFrame = { val assembler: VectorAssembler = new VectorAssembler() .setInputCols(featureColNames) .setOutputCol(outputColName) assembler.transform(df) } def withLabel( inputColName: String = "Survived", outputColName: String = "label" )(df: DataFrame) = { val labelIndexer: StringIndexer = new StringIndexer() .setInputCol(inputColName) .setOutputCol(outputColName) labelIndexer .fit(df) .transform(df) } def model(df: DataFrame = TitanicData.trainingDF()): LogisticRegressionModel = { val trainFeatures: DataFrame = df .transform(withVectorizedFeatures()) .transform(withLabel()) .select("features", "label") // only uses the features and label columns new LogisticRegression() .fit(trainFeatures) } def persistModel(): Unit = { model().save("./tmp/titanic_model/") } }
Example 16
Source File: LogisticRegressionSuite.scala From aardpfark with Apache License 2.0 | 5 votes |
package com.ibm.aardpfark.spark.ml.classification import com.ibm.aardpfark.pfa.ProbClassifierResult import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.linalg.Vector import org.apache.spark.sql.{DataFrame, Row} class LogisticRegressionSuite extends SparkClassifierPFASuiteBase[ProbClassifierResult] { import spark.implicits._ def getOutput(df: DataFrame) = { df.select(clf.getPredictionCol, clf.getRawPredictionCol, clf.getProbabilityCol).map { case Row(p: Double, raw: Vector, pr: Vector) => (p, raw.toArray, pr.toArray) }.toDF(clf.getPredictionCol, clf.getRawPredictionCol, clf.getProbabilityCol).toJSON.collect() } val binaryData = spark.read.format("libsvm").load("data/sample_libsvm_data.txt") val multiData = spark.read.format("libsvm").load("data/sample_multiclass_classification_data.txt") val clf = new LogisticRegression() override val sparkTransformer = clf.fit(binaryData) val result = sparkTransformer.transform(binaryData) override val input = withColumnAsArray(result, clf.getFeaturesCol).toJSON.collect() override val expectedOutput = getOutput(result) // Additional tests test("LogisticRegression w/o fitIntercept") { val sparkTransformer = clf.setFitIntercept(false).fit(binaryData) val result = sparkTransformer.transform(binaryData) val expectedOutput = getOutput(result) parityTest(sparkTransformer, input, expectedOutput) } test("LogisticRegression w/ non-default threshold") { val sparkTransformer = clf.setThreshold(0.0).fit(binaryData) val result = sparkTransformer.transform(binaryData) val expectedOutput = getOutput(result) parityTest(sparkTransformer, input, expectedOutput) val sparkTransformer2 = clf.setThreshold(1.0).fit(binaryData) val result2 = sparkTransformer2.transform(binaryData) val expectedOutput2 = getOutput(result2) parityTest(sparkTransformer2, input, expectedOutput2) } test("MLOR w/ intercept") { val sparkTransformer = clf.fit(multiData) val result = sparkTransformer.transform(multiData) val input = withColumnAsArray(result, clf.getFeaturesCol).toJSON.collect() val expectedOutput = getOutput(result) parityTest(sparkTransformer, input, expectedOutput) } test("MLOR w/o intercept") { val sparkTransformer = clf.setFitIntercept(false).fit(multiData) val result = sparkTransformer.transform(multiData) val input = withColumnAsArray(result, clf.getFeaturesCol).toJSON.collect() val expectedOutput = getOutput(result) parityTest(sparkTransformer, input, expectedOutput) } test("MLOR w/ thresholds") { val sparkTransformer = clf.setThresholds(Array(0.1, 0.6, 0.3)).fit(multiData) val result = sparkTransformer.transform(multiData) val input = withColumnAsArray(result, clf.getFeaturesCol).toJSON.collect() val expectedOutput = getOutput(result) parityTest(sparkTransformer, input, expectedOutput) } test("MLOR w/ thresholds - one zero") { val sparkTransformer = clf.setThresholds(Array(0.0, 0.6, 0.3)).fit(multiData) val result = sparkTransformer.transform(multiData) val input = withColumnAsArray(result, clf.getFeaturesCol).toJSON.collect() val expectedOutput = getOutput(result) parityTest(sparkTransformer, input, expectedOutput) } }
Example 17
Source File: PipelineExampleTest.scala From apache-spark-test with Apache License 2.0 | 5 votes |
package com.github.dnvriend.spark.ml import com.github.dnvriend.TestSpec import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.feature.{ HashingTF, Tokenizer } import org.apache.spark.ml.{ Pipeline, PipelineModel } import org.apache.spark.sql.Row class PipelineExampleTest extends TestSpec { it should "PipelineExample" in withSparkSession { spark => import spark.implicits._ // Prepare training documents from a list of (id, text, label) tuples. val training = Seq( (0L, "a b c d e spark", 1.0), (1L, "b d", 0.0), (2L, "spark f g h", 1.0), (3L, "hadoop mapreduce", 0.0) ).toDF("id", "text", "label") // Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr. val tokenizer = new Tokenizer() .setInputCol("text") .setOutputCol("words") val hashingTF = new HashingTF() .setNumFeatures(1000) .setInputCol(tokenizer.getOutputCol) .setOutputCol("features") val lr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.01) val pipeline = new Pipeline() .setStages(Array(tokenizer, hashingTF, lr)) // Fit the pipeline to training documents. val model = pipeline.fit(training) // Now we can optionally save the fitted pipeline to disk model.write.overwrite().save("/tmp/spark-logistic-regression-model") // We can also save this unfit pipeline to disk pipeline.write.overwrite().save("/tmp/unfit-lr-model") // And load it back in during production val sameModel = PipelineModel.load("/tmp/spark-logistic-regression-model") // Prepare test documents, which are unlabeled (id, text) tuples. val test = Seq( (4L, "spark i j k"), (5L, "l m n"), (6L, "mapreduce spark"), (7L, "apache hadoop"), (8L, "spark f g h"), (9L, "d e f spark a b c"), (10L, "spark baz bar a b c"), (11L, "foo bar a b c spark"), (12L, "a b c scala d e f"), (13L, "spark mapreduce") ).toDF("id", "text") // Make predictions on test documents. model.transform(test) .select("id", "text", "probability", "prediction") .collect() .foreach { case Row(id: Long, text: String, prob, prediction: Double) => println(s"($id, $text) --> prob=$prob, prediction=$prediction") } } }
Example 18
Source File: MyPipeLine.scala From Apache-Spark-2x-Machine-Learning-Cookbook with MIT License | 5 votes |
package spark.ml.cookbook.chapter4 import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.feature.{HashingTF, Tokenizer} import org.apache.spark.sql.SparkSession import org.apache.log4j.{Level, Logger} object MyPipeLine { def main(args: Array[String]): Unit = { Logger.getLogger("org").setLevel(Level.ERROR) Logger.getLogger("akka").setLevel(Level.ERROR) // setup SparkSession to use for interactions with Spark val spark = SparkSession .builder .master("local[*]") .appName("My PipeLine") .config("spark.sql.warehouse.dir", ".") .getOrCreate() val trainset = spark.createDataFrame(Seq( (1L, 1, "spark rocks"), (2L, 0, "flink is the best"), (3L, 1, "Spark rules"), (4L, 0, "mapreduce forever"), (5L, 0, "Kafka is great") )).toDF("id", "label", "words") val tokenizer = new Tokenizer() .setInputCol("words") .setOutputCol("tokens") val hashingTF = new HashingTF() .setNumFeatures(1000) .setInputCol(tokenizer.getOutputCol) .setOutputCol("features") val lr = new LogisticRegression() .setMaxIter(15) .setRegParam(0.01) // three stage pipeline val pipeline = new Pipeline() .setStages(Array(tokenizer, hashingTF, lr)) // Fit the pipeline to training documents. val model = pipeline.fit(trainset) val testSet = spark.createDataFrame(Seq( (10L, 1, "use spark please"), (11L, 2, "Kafka") )).toDF("id", "label", "words") model.transform(testSet).select("probability","prediction").show(false) spark.stop() } }
Example 19
Source File: OnevsRest.scala From Apache-Spark-2x-Machine-Learning-Cookbook with MIT License | 5 votes |
package spark.ml.cookbook.chapter5 import org.apache.spark.sql.SparkSession import org.apache.spark.ml.classification.{LogisticRegression, OneVsRest} import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator object OnevsRest { def main(args: Array[String]): Unit = { import org.apache.log4j.Logger import org.apache.log4j.Level Logger.getLogger("org").setLevel(Level.ERROR) Logger.getLogger("akka").setLevel(Level.ERROR) val spark = SparkSession .builder .master("local[*]") .appName("MLP") .config("spark.sql.warehouse.dir", ".") .getOrCreate() val data = spark.read.format("libsvm") .load("../data/sparkml2/chapter5/iris.scale.txt") data.show(false) val Array(train, test) = data.randomSplit(Array(0.8, 0.2), seed = System.currentTimeMillis()) // logistic regression classifier val lrc = new LogisticRegression() .setMaxIter(15) .setTol(1E-3) .setFitIntercept(true) val ovr = new OneVsRest().setClassifier(lrc) val ovrModel = ovr.fit(train) val predictions = ovrModel.transform(test) predictions.show(false) val eval = new MulticlassClassificationEvaluator() .setMetricName("accuracy") // compute the classification error on test data. val accuracy = eval.evaluate(predictions) println("Accuracy: " + eval.evaluate(predictions)) } }
Example 20
Source File: MLPipelineTest.scala From Scala-for-Machine-Learning-Second-Edition with MIT License | 5 votes |
package org.scalaml.spark.mlpipeline import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel} import org.apache.spark.ml.param.ParamMap import org.scalaml.Logging import org.scalaml.spark.ResourcesLoader import org.scalatest.{FlatSpec, Matchers} final class MLPipelineTest extends FlatSpec with Matchers with Logging { protected val name = "Spark ML pipeline" final val trainFile = "/data/spark/mlpipeline_training.csv" final val testFile = "/data/spark/mlpipeline_test.csv" final val columns = Array[String]("date", "asset", "region", "agent") it should s"$name simple predictor" in { show(s"$name simple predictor") (for { trainPath <- ResourcesLoader.getPath(trainFile) testPath <- ResourcesLoader.getPath(testFile) } yield { val predictor = new SimplePredictor[LogisticRegressionModel]( new LogisticRegression().setMaxIter(5).setRegParam(0.1), columns, trainPath ) (predictor, predictor.classify(predictor(), testPath)) }).map { case (predictor, output) => { output.printSchema val predictedValues = output.select("prediction").collect.map(_.getDouble(0)) output.show predictor.stop predictedValues(0) } should be(0.0) } } it should s"$name cross validation" in { show(s"$name cross validation") (for { trainPath <- ResourcesLoader.getPath(trainFile) testPath <- ResourcesLoader.getPath(testFile) } yield { val lr = new LogisticRegression().setMaxIter(5).setRegParam(0.1) val paramsMap = new ParamMap().put(lr.maxIter -> 30).put(lr.regParam -> 0.1) val validator = new ValidatedPredictor[LogisticRegressionModel](lr, columns, trainPath) val (f1, auROC) = validator.trainingWithSummary.getOrElse((Double.NaN, Double.NaN)) println(s"F1-measure = ${f1} auROC = ${auROC}") validator.stop f1 should be(0.025 +- 0.005) auROC should be(0.600 +- 0.005) }) } } // -------------------------------- EOF ---------------------------------------------
Example 21
Source File: ModelPersistence.scala From reactive-machine-learning-systems with MIT License | 5 votes |
package com.reactivemachinelearning import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator import org.apache.spark.ml.feature.{QuantileDiscretizer, VectorAssembler} import org.apache.spark.ml.tuning.{CrossValidator, CrossValidatorModel, ParamGridBuilder} import org.apache.spark.sql.SparkSession object ModelPersistence extends App { val session = SparkSession.builder.appName("ModelPersistence").getOrCreate() val data = Seq( (0, 18.0, 0), (1, 20.0, 0), (2, 8.0, 1), (3, 5.0, 1), (4, 2.0, 0), (5, 21.0, 0), (6, 7.0, 1), (7, 18.0, 0), (8, 3.0, 1), (9, 22.0, 0), (10, 8.0, 1), (11, 2.0, 0), (12, 5.0, 1), (13, 4.0, 1), (14, 1.0, 0), (15, 11.0, 0), (16, 7.0, 1), (17, 15.0, 0), (18, 3.0, 1), (19, 20.0, 0)) val instances = session.createDataFrame(data) .toDF("id", "seeds", "label") val discretizer = new QuantileDiscretizer() .setInputCol("seeds") .setOutputCol("discretized") .setNumBuckets(3) val assembler = new VectorAssembler() .setInputCols(Array("discretized")) .setOutputCol("features") val classifier = new LogisticRegression() .setMaxIter(5) val pipeline = new Pipeline() .setStages(Array(discretizer, assembler, classifier)) val paramMaps = new ParamGridBuilder() .addGrid(classifier.regParam, Array(0.0, 0.1)) .build() val evaluator = new BinaryClassificationEvaluator() val crossValidator = new CrossValidator() .setEstimator(pipeline) .setEvaluator(evaluator) .setNumFolds(2) .setEstimatorParamMaps(paramMaps) val model = crossValidator.fit(instances) model.write.overwrite().save("my-model") val persistedModel = CrossValidatorModel.load("./my-model") println(s"UID: ${persistedModel.uid}") }
Example 22
Source File: FeatureCrossSelectorExample.scala From automl with Apache License 2.0 | 5 votes |
package com.tencent.angel.spark.automl.feature.examples import org.apache.spark.SparkConf import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.ml.feature.operator.{VarianceSelector, VectorCartesian} import org.apache.spark.sql.SparkSession object FeatureCrossSelectorExample { def main(args: Array[String]): Unit = { val conf = new SparkConf() val input = conf.get("spark.input.path", "data/a9a/a9a_123d_train_trans.libsvm") val numFeatures = conf.get("spark.num.feature", "123") val twoOrderNumFeatures = conf.getInt("spark.two.order.num.feature", 123) val threeOrderNumFeatures = conf.getInt("spark.three.order.num.feature", 123) val spark = SparkSession.builder().master("local").config(conf).getOrCreate() val data = spark.read.format("libsvm") .option("numFeatures", numFeatures) .load(input) .persist() val cartesian = new VectorCartesian() .setInputCols(Array("features", "features")) .setOutputCol("f_f") val selector = new VarianceSelector() .setFeaturesCol("f_f") .setOutputCol("selected_f_f") .setNumTopFeatures(twoOrderNumFeatures) val cartesian2 = new VectorCartesian() .setInputCols(Array("features", "selected_f_f")) .setOutputCol("f_f_f") val selector2 = new VarianceSelector() .setFeaturesCol("f_f_f") .setOutputCol("selected_f_f_f") .setNumTopFeatures(threeOrderNumFeatures) val assembler = new VectorAssembler() .setInputCols(Array("features", "selected_f_f", "selected_f_f_f")) .setOutputCol("assembled_features") val pipeline = new Pipeline() .setStages(Array(cartesian, selector, cartesian2, selector2, assembler)) val crossDF = pipeline.fit(data).transform(data).persist() data.unpersist() crossDF.drop("f_f", "f_f_f", "selected_f_f", "selected_f_f_f") crossDF.show(1) val splitDF = crossDF.randomSplit(Array(0.9, 0.1)) val trainDF = splitDF(0).persist() val testDF = splitDF(1).persist() val originalLR = new LogisticRegression() .setFeaturesCol("features") .setLabelCol("label") .setMaxIter(20) .setRegParam(0.01) val originalPredictions = originalLR.fit(trainDF).transform(testDF) originalPredictions.show(1) val originalEvaluator = new BinaryClassificationEvaluator() .setLabelCol("label") .setRawPredictionCol("rawPrediction") .setMetricName("areaUnderROC") val originalAUC = originalEvaluator.evaluate(originalPredictions) println(s"original features auc: $originalAUC") val crossLR = new LogisticRegression() .setFeaturesCol("assembled_features") .setLabelCol("label") .setMaxIter(20) .setRegParam(0.01) val crossPredictions = crossLR.fit(trainDF).transform(testDF) crossPredictions.show(1) val crossEvaluator = new BinaryClassificationEvaluator() .setLabelCol("label") .setRawPredictionCol("rawPrediction") .setMetricName("areaUnderROC") val crossAUC = crossEvaluator.evaluate(crossPredictions) println(s"cross features auc: $crossAUC") spark.close() } }
Example 23
Source File: InnerProductNNCtrModel.scala From CTRmodel with Apache License 2.0 | 5 votes |
package com.ggstar.ctrmodel import com.ggstar.features.FeatureEngineering import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{LogisticRegression, MultilayerPerceptronClassifier} import org.apache.spark.ml.linalg.DenseVector import org.apache.spark.sql.DataFrame class InnerProductNNCtrModel extends BaseCtrModel { def train(samples:DataFrame) : Unit = { //calculate inner product between item embedding and user embedding val samplesWithInnerProduct = FeatureEngineering.calculateEmbeddingInnerProduct(samples) val prePipelineModel = FeatureEngineering.preProcessInnerProductSamples(samplesWithInnerProduct) val preparedSamples = prePipelineModel.transform(samplesWithInnerProduct) //network architecture, better to keep tuning it until metrics converge val layers = Array[Int](preparedSamples.first().getAs[DenseVector]("scaledFeatures").toArray.length, preparedSamples.first().getAs[DenseVector]("scaledFeatures").toArray.length / 2, 2) val nnModel = new MultilayerPerceptronClassifier() .setLayers(layers) .setBlockSize(128) .setSeed(1234L) .setMaxIter(150) //max iterations, keep increasing it if loss function or metrics don't converge .setStepSize(0.005) //learning step size, larger size will lead to loss vibration .setFeaturesCol("scaledFeatures") .setLabelCol("label") val pipelineStages = prePipelineModel.stages ++ Array(nnModel) _pipelineModel = new Pipeline().setStages(pipelineStages).fit(samplesWithInnerProduct) } override def transform(samples:DataFrame):DataFrame = { val samplesWithInnerProduct = FeatureEngineering.calculateEmbeddingInnerProduct(samples) _pipelineModel.transform(samplesWithInnerProduct) } }
Example 24
Source File: LogisticRegressionCtrModel.scala From CTRmodel with Apache License 2.0 | 5 votes |
package com.ggstar.ctrmodel import com.ggstar.features.FeatureEngineering import org.apache.spark.ml.{Pipeline, PipelineStage} import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.sql.DataFrame class LogisticRegressionCtrModel extends BaseCtrModel { def train(samples:DataFrame) : Unit = { val featureEngineeringStages:Array[PipelineStage] = FeatureEngineering.preProcessSamplesStages() val model:LogisticRegression = new LogisticRegression() .setMaxIter(20) //max iteration .setRegParam(0.0) //regularization parameter .setElasticNetParam(0.0) //0-L2 regularization 1-L1 regularization .setFeaturesCol("scaledFeatures") .setLabelCol("label") val pipelineStages = featureEngineeringStages ++ Array(model) _pipelineModel = new Pipeline().setStages(pipelineStages).fit(samples) } }
Example 25
Source File: Describe.scala From Scala-Machine-Learning-Projects with MIT License | 5 votes |
package com.packt.ScalaML.ChrunPrediction import org.apache.spark._ import org.apache.spark.sql.SparkSession import org.apache.spark.sql.functions._ import org.apache.spark.ml.classification.{ BinaryLogisticRegressionSummary, LogisticRegression, LogisticRegressionModel } import org.apache.spark.sql.SparkSession import org.apache.spark.sql.functions.max import org.apache.spark.ml.Pipeline import org.apache.spark.ml.tuning.{ ParamGridBuilder, CrossValidator } import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator import org.apache.spark._ import org.apache.spark.sql.functions._ import org.apache.spark.sql.types._ import org.apache.spark.sql._ import org.apache.spark.sql.Dataset import org.apache.spark.ml.linalg.{ Matrix, Vectors } import org.apache.spark.ml.stat.Correlation import org.apache.spark.sql.Row object Describe { case class CustomerAccount(state_code: String, account_length: Integer, area_code: String, international_plan: String, voice_mail_plan: String, num_voice_mail: Double, total_day_mins: Double, total_day_calls: Double, total_day_charge: Double, total_evening_mins: Double, total_evening_calls: Double, total_evening_charge: Double, total_night_mins: Double, total_night_calls: Double, total_night_charge: Double, total_international_mins: Double, total_international_calls: Double, total_international_charge: Double, total_international_num_calls: Double, churn: String) val schema = StructType(Array( StructField("state_code", StringType, true), StructField("account_length", IntegerType, true), StructField("area_code", StringType, true), StructField("international_plan", StringType, true), StructField("voice_mail_plan", StringType, true), StructField("num_voice_mail", DoubleType, true), StructField("total_day_mins", DoubleType, true), StructField("total_day_calls", DoubleType, true), StructField("total_day_charge", DoubleType, true), StructField("total_evening_mins", DoubleType, true), StructField("total_evening_calls", DoubleType, true), StructField("total_evening_charge", DoubleType, true), StructField("total_night_mins", DoubleType, true), StructField("total_night_calls", DoubleType, true), StructField("total_night_charge", DoubleType, true), StructField("total_international_mins", DoubleType, true), StructField("total_international_calls", DoubleType, true), StructField("total_international_charge", DoubleType, true), StructField("total_international_num_calls", DoubleType, true), StructField("churn", StringType, true))) def main(args: Array[String]) { val spark = SparkSession .builder .master("local[*]") .config("spark.sql.warehouse.dir", "E:/Exp/") .appName("Desribe") .getOrCreate() spark.conf.set("spark.debug.maxToStringFields", 10000) val DEFAULT_MAX_TO_STRING_FIELDS = 2500 if (SparkEnv.get != null) { SparkEnv.get.conf.getInt("spark.debug.maxToStringFields", DEFAULT_MAX_TO_STRING_FIELDS) } else { DEFAULT_MAX_TO_STRING_FIELDS } import spark.implicits._ val trainSet: Dataset[CustomerAccount] = spark.read. option("inferSchema", "false") .format("com.databricks.spark.csv") .schema(schema) .load("data/churn-bigml-80.csv") .as[CustomerAccount] val statsDF = trainSet.describe() statsDF.show() trainSet.createOrReplaceTempView("UserAccount") spark.catalog.cacheTable("UserAccount") spark.sqlContext.sql("SELECT churn, SUM(total_day_mins) + SUM(total_evening_mins) + SUM(total_night_mins) + SUM(total_international_mins) as Total_minutes FROM UserAccount GROUP BY churn").show() spark.sqlContext.sql("SELECT churn, SUM(total_day_charge) as TDC, SUM(total_evening_charge) as TEC, SUM(total_night_charge) as TNC, SUM(total_international_charge) as TIC, SUM(total_day_charge) + SUM(total_evening_charge) + SUM(total_night_charge) + SUM(total_international_charge) as Total_charge FROM UserAccount GROUP BY churn ORDER BY Total_charge DESC").show() trainSet.groupBy("churn").count.show() spark.sqlContext.sql("SELECT churn,SUM(total_international_num_calls) FROM UserAccount GROUP BY churn") } }
Example 26
Source File: ChurnPredictionLR.scala From Scala-Machine-Learning-Projects with MIT License | 5 votes |
package com.packt.ScalaML.ChrunPrediction import org.apache.spark._ import org.apache.spark.sql.SparkSession import org.apache.spark.sql.functions._ import org.apache.spark.ml.classification.{BinaryLogisticRegressionSummary, LogisticRegression, LogisticRegressionModel} import org.apache.spark.ml.Pipeline import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator} import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator object ChurnPredictionLR { def main(args: Array[String]) { val spark: SparkSession = SparkSessionCreate.createSession("ChurnPredictionLogisticRegression") import spark.implicits._ val numFolds = 10 val MaxIter: Seq[Int] = Seq(100) val RegParam: Seq[Double] = Seq(1.0) // L2 regularization param, set 0.10 with L1 reguarization val Tol: Seq[Double] = Seq(1e-8) val ElasticNetParam: Seq[Double] = Seq(1.0) // Combination of L1 and L2 val lr = new LogisticRegression() .setLabelCol("label") .setFeaturesCol("features") // Chain indexers and tree in a Pipeline. val pipeline = new Pipeline() .setStages(Array(PipelineConstruction.ipindexer, PipelineConstruction.labelindexer, PipelineConstruction.assembler, lr)) // Search through decision tree's maxDepth parameter for best model val paramGrid = new ParamGridBuilder() .addGrid(lr.maxIter, MaxIter) .addGrid(lr.regParam, RegParam) .addGrid(lr.tol, Tol) .addGrid(lr.elasticNetParam, ElasticNetParam) .build() val evaluator = new BinaryClassificationEvaluator() .setLabelCol("label") .setRawPredictionCol("prediction") // Set up 10-fold cross validation val crossval = new CrossValidator() .setEstimator(pipeline) .setEvaluator(evaluator) .setEstimatorParamMaps(paramGrid) .setNumFolds(numFolds) val cvModel = crossval.fit(Preprocessing.trainDF) val predictions = cvModel.transform(Preprocessing.testSet) val result = predictions.select("label", "prediction", "probability") val resutDF = result.withColumnRenamed("prediction", "Predicted_label") resutDF.show(10) val accuracy = evaluator.evaluate(predictions) println("Classification accuracy: " + accuracy) // Compute other performence metrices val predictionAndLabels = predictions .select("prediction", "label") .rdd.map(x => (x(0).asInstanceOf[Double], x(1) .asInstanceOf[Double])) val metrics = new BinaryClassificationMetrics(predictionAndLabels) val areaUnderPR = metrics.areaUnderPR println("Area under the precision-recall curve: " + areaUnderPR) val areaUnderROC = metrics.areaUnderROC println("Area under the receiver operating characteristic (ROC) curve: " + areaUnderROC) val lp = predictions.select("label", "prediction") val counttotal = predictions.count() val correct = lp.filter($"label" === $"prediction").count() val wrong = lp.filter(not($"label" === $"prediction")).count() val ratioWrong = wrong.toDouble / counttotal.toDouble val ratioCorrect = correct.toDouble / counttotal.toDouble val truep = lp.filter($"prediction" === 0.0).filter($"label" === $"prediction").count() / counttotal.toDouble val truen = lp.filter($"prediction" === 1.0).filter($"label" === $"prediction").count() / counttotal.toDouble val falsep = lp.filter($"prediction" === 1.0).filter(not($"label" === $"prediction")).count() / counttotal.toDouble val falsen = lp.filter($"prediction" === 0.0).filter(not($"label" === $"prediction")).count() / counttotal.toDouble println("Total Count: " + counttotal) println("Correct: " + correct) println("Wrong: " + wrong) println("Ratio wrong: " + ratioWrong) println("Ratio correct: " + ratioCorrect) println("Ratio true positive: " + truep) println("Ratio false positive: " + falsep) println("Ratio true negative: " + truen) println("Ratio false negative: " + falsen) } }
Example 27
Source File: VLORRealDataExample.scala From spark-vlbfgs with Apache License 2.0 | 5 votes |
package org.apache.spark.ml.example import org.apache.spark.ml.classification.{LogisticRegression, VLogisticRegression} import org.apache.spark.sql.{Dataset, SparkSession} object VLORRealDataExample { // https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a def main(args: Array[String]) = { val spark = SparkSession .builder() .appName("VLogistic Regression real data example") .getOrCreate() val sc = spark.sparkContext val dataset1: Dataset[_] = spark.read.format("libsvm").load("data/a9a") val trainer = new LogisticRegression() .setFitIntercept(false) .setRegParam(0.5) val model = trainer.fit(dataset1) val vtrainer = new VLogisticRegression() .setColsPerBlock(100) .setRowsPerBlock(10) .setColPartitions(3) .setRowPartitions(3) .setRegParam(0.5) val vmodel = vtrainer.fit(dataset1) println(s"VLogistic regression coefficients: ${vmodel.coefficients}") println(s"Logistic regression coefficients: ${model.coefficients}") sc.stop() } }
Example 28
Source File: OneVsRestParitySpec.scala From mleap with Apache License 2.0 | 5 votes |
package org.apache.spark.ml.parity.classification import org.apache.spark.ml.{Pipeline, Transformer} import org.apache.spark.ml.classification.{LogisticRegression, OneVsRest} import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler} import org.apache.spark.ml.parity.SparkParityBase import org.apache.spark.sql.DataFrame class OneVsRestParitySpec extends SparkParityBase { override val dataset: DataFrame = baseDataset.select("fico_score_group_fnl", "dti") override val sparkTransformer: Transformer = new Pipeline().setStages(Array(new StringIndexer(). setInputCol("fico_score_group_fnl"). setOutputCol("fico_index"), new VectorAssembler(). setInputCols(Array("fico_index", "dti")). setOutputCol("features"), new OneVsRest().setClassifier(new LogisticRegression()). setLabelCol("fico_index"). setFeaturesCol("features"). setPredictionCol("prediction"))).fit(dataset) override val unserializedParams = Set("stringOrderType", "classifier", "labelCol") }
Example 29
Source File: TestSparkMl.scala From mleap with Apache License 2.0 | 5 votes |
package ml.combust.mleap.databricks.runtime.testkit import java.io.File import java.nio.file.{Files, StandardCopyOption} import ml.combust.bundle.BundleFile import org.apache.spark.ml.bundle.SparkBundleContext import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler} import org.apache.spark.sql.SparkSession import com.databricks.spark.avro._ import ml.combust.mleap.spark.SparkSupport._ import ml.combust.mleap.runtime.MleapSupport._ import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.LogisticRegression class TestSparkMl(session: SparkSession) extends Runnable { override def run(): Unit = { val sqlContext = session.sqlContext // Create a temporary file and copy the contents of the resource avro to it val path = Files.createTempFile("mleap-databricks-runtime-testkit", ".avro") Files.copy(getClass.getClassLoader.getResource("datasources/lending_club_sample.avro").openStream(), path, StandardCopyOption.REPLACE_EXISTING) val sampleData = sqlContext.read.avro(path.toString) sampleData.show() val stringIndexer = new StringIndexer(). setInputCol("fico_score_group_fnl"). setOutputCol("fico_index") val featureAssembler = new VectorAssembler(). setInputCols(Array(stringIndexer.getOutputCol, "dti", "loan_amount")). setOutputCol("features") val logisticRegression = new LogisticRegression(). setFeaturesCol(featureAssembler.getOutputCol). setLabelCol("approved"). setPredictionCol("prediction") val pipeline = new Pipeline().setStages(Array(stringIndexer, featureAssembler, logisticRegression)) val model = pipeline.fit(sampleData) val modelPath = Files.createTempFile("mleap-databricks-runtime-testkit", ".zip") Files.delete(modelPath) // Save the model { println("Writing model to...", modelPath) implicit val sbc = SparkBundleContext.defaultContext.withDataset(model.transform(sampleData)) val bf = BundleFile(new File(modelPath.toString)) model.writeBundle.save(bf).get bf.close() } // Load the model { val bf = BundleFile(new File(modelPath.toString)) bf.loadMleapBundle().get bf.close() } } }
Example 30
Source File: MulticlassLogisticRegressionWithElasticNetExample.scala From drizzle-spark with Apache License 2.0 | 5 votes |
// scalastyle:off println package org.apache.spark.examples.ml // $example on$ import org.apache.spark.ml.classification.LogisticRegression // $example off$ import org.apache.spark.sql.SparkSession object MulticlassLogisticRegressionWithElasticNetExample { def main(args: Array[String]): Unit = { val spark = SparkSession .builder .appName("MulticlassLogisticRegressionWithElasticNetExample") .getOrCreate() // $example on$ // Load training data val training = spark .read .format("libsvm") .load("data/mllib/sample_multiclass_classification_data.txt") val lr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.3) .setElasticNetParam(0.8) // Fit the model val lrModel = lr.fit(training) // Print the coefficients and intercept for multinomial logistic regression println(s"Coefficients: \n${lrModel.coefficientMatrix}") println(s"Intercepts: ${lrModel.interceptVector}") // $example off$ spark.stop() } } // scalastyle:on println
Example 31
Source File: LogisticRegressionPipeline.scala From Machine-Learning-with-Spark-Second-Edition with MIT License | 5 votes |
package org.sparksamples.classification.stumbleupon import org.apache.log4j.Logger import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.evaluation.RegressionEvaluator import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit} import org.apache.spark.mllib.evaluation.RegressionMetrics import org.apache.spark.sql.DataFrame object LogisticRegressionPipeline { @transient lazy val logger = Logger.getLogger(getClass.getName) def logisticRegressionPipeline(vectorAssembler: VectorAssembler, dataFrame: DataFrame) = { val lr = new LogisticRegression() val paramGrid = new ParamGridBuilder() .addGrid(lr.regParam, Array(0.1, 0.01)) .addGrid(lr.fitIntercept) .addGrid(lr.elasticNetParam, Array(0.0, 0.25, 0.5, 0.75, 1.0)) .build() val pipeline = new Pipeline().setStages(Array(vectorAssembler, lr)) val trainValidationSplit = new TrainValidationSplit() .setEstimator(pipeline) .setEvaluator(new RegressionEvaluator) .setEstimatorParamMaps(paramGrid) // 80% of the data will be used for training and the remaining 20% for validation. .setTrainRatio(0.8) val Array(training, test) = dataFrame.randomSplit(Array(0.8, 0.2), seed = 12345) //val model = trainValidationSplit.fit(training) val model = trainValidationSplit.fit(dataFrame) //val holdout = model.transform(test).select("prediction","label") val holdout = model.transform(dataFrame).select("prediction","label") // have to do a type conversion for RegressionMetrics val rm = new RegressionMetrics(holdout.rdd.map(x => (x(0).asInstanceOf[Double], x(1).asInstanceOf[Double]))) logger.info("Test Metrics") logger.info("Test Explained Variance:") logger.info(rm.explainedVariance) logger.info("Test R^2 Coef:") logger.info(rm.r2) logger.info("Test MSE:") logger.info(rm.meanSquaredError) logger.info("Test RMSE:") logger.info(rm.rootMeanSquaredError) val totalPoints = dataFrame.count() val lrTotalCorrect = holdout.rdd.map(x => if (x(0).asInstanceOf[Double] == x(1).asInstanceOf[Double]) 1 else 0).sum() val accuracy = lrTotalCorrect/totalPoints println("Accuracy of LogisticRegression is: ", accuracy) holdout.rdd.map(x => x(0).asInstanceOf[Double]).repartition(1).saveAsTextFile("/Users/manpreet.singh/Sandbox/codehub/github/machinelearning/spark-ml/Chapter_06/2.0.0/scala-spark-app/src/main/scala/org/sparksamples/classification/results/LR.xls") holdout.rdd.map(x => x(1).asInstanceOf[Double]).repartition(1).saveAsTextFile("/Users/manpreet.singh/Sandbox/codehub/github/machinelearning/spark-ml/Chapter_06/2.0.0/scala-spark-app/src/main/scala/org/sparksamples/classification/results/Actual.xls") savePredictions(holdout, dataFrame, rm, "/Users/manpreet.singh/Sandbox/codehub/github/machinelearning/spark-ml/Chapter_06/2.0.0/scala-spark-app/src/main/scala/org/sparksamples/classification/results/LogisticRegression.csv") } def savePredictions(predictions:DataFrame, testRaw:DataFrame, regressionMetrics: RegressionMetrics, filePath:String) = { println("Mean Squared Error:", regressionMetrics.meanSquaredError) println("Root Mean Squared Error:", regressionMetrics.rootMeanSquaredError) predictions .coalesce(1) .write.format("com.databricks.spark.csv") .option("header", "true") .save(filePath) } }
Example 32
Source File: LogisticRegressionPipeline.scala From Machine-Learning-with-Spark-Second-Edition with MIT License | 5 votes |
package org.sparksamples.classification.stumbleupon import org.apache.log4j.Logger import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.evaluation.RegressionEvaluator import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit} import org.apache.spark.mllib.evaluation.RegressionMetrics import org.apache.spark.sql.DataFrame object LogisticRegressionPipeline { @transient lazy val logger = Logger.getLogger(getClass.getName) def logisticRegressionPipeline(vectorAssembler: VectorAssembler, dataFrame: DataFrame) = { val lr = new LogisticRegression() val paramGrid = new ParamGridBuilder() .addGrid(lr.regParam, Array(0.1, 0.01)) .addGrid(lr.fitIntercept) .addGrid(lr.elasticNetParam, Array(0.0, 0.25, 0.5, 0.75, 1.0)) .build() val pipeline = new Pipeline().setStages(Array(vectorAssembler, lr)) val trainValidationSplit = new TrainValidationSplit() .setEstimator(pipeline) .setEvaluator(new RegressionEvaluator) .setEstimatorParamMaps(paramGrid) // 80% of the data will be used for training and the remaining 20% for validation. .setTrainRatio(0.8) val Array(training, test) = dataFrame.randomSplit(Array(0.8, 0.2), seed = 12345) //val model = trainValidationSplit.fit(training) val model = trainValidationSplit.fit(dataFrame) //val holdout = model.transform(test).select("prediction","label") val holdout = model.transform(dataFrame).select("prediction","label") // have to do a type conversion for RegressionMetrics val rm = new RegressionMetrics(holdout.rdd.map(x => (x(0).asInstanceOf[Double], x(1).asInstanceOf[Double]))) logger.info("Test Metrics") logger.info("Test Explained Variance:") logger.info(rm.explainedVariance) logger.info("Test R^2 Coef:") logger.info(rm.r2) logger.info("Test MSE:") logger.info(rm.meanSquaredError) logger.info("Test RMSE:") logger.info(rm.rootMeanSquaredError) val totalPoints = dataFrame.count() val lrTotalCorrect = holdout.rdd.map(x => if (x(0).asInstanceOf[Double] == x(1).asInstanceOf[Double]) 1 else 0).sum() val accuracy = lrTotalCorrect/totalPoints println("Accuracy of LogisticRegression is: ", accuracy) holdout.rdd.map(x => x(0).asInstanceOf[Double]).repartition(1).saveAsTextFile("/home/ubuntu/work/ml-resources/spark-ml/results/LR.xls") holdout.rdd.map(x => x(1).asInstanceOf[Double]).repartition(1).saveAsTextFile("/home/ubuntu/work/ml-resources/spark-ml/results/Actual.xls") savePredictions(holdout, dataFrame, rm, "/home/ubuntu/work/ml-resources/spark-ml/results/LogisticRegression.csv") } def savePredictions(predictions:DataFrame, testRaw:DataFrame, regressionMetrics: RegressionMetrics, filePath:String) = { println("Mean Squared Error:", regressionMetrics.meanSquaredError) println("Root Mean Squared Error:", regressionMetrics.rootMeanSquaredError) predictions .coalesce(1) .write.format("com.databricks.spark.csv") .option("header", "true") .save(filePath) } }
Example 33
Source File: TextClassificationPipeline.scala From Machine-Learning-with-Spark-Second-Edition with MIT License | 5 votes |
package org.textclassifier import org.apache.spark.ml.{Pipeline, PipelineModel} import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.feature.{HashingTF, Tokenizer} import org.apache.spark.ml.linalg.Vector import org.apache.spark.sql.Row import org.utils.StandaloneSpark object TextClassificationPipeline { def main(args: Array[String]): Unit = { val spark = StandaloneSpark.getSparkInstance() // Prepare training documents from a list of (id, text, label) tuples. val training = spark.createDataFrame(Seq( (0L, "a b c d e spark", 1.0), (1L, "b d", 0.0), (2L, "spark f g h", 1.0), (3L, "hadoop mapreduce", 0.0) )).toDF("id", "text", "label") // Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr. val tokenizer = new Tokenizer() .setInputCol("text") .setOutputCol("words") val hashingTF = new HashingTF() .setNumFeatures(1000) .setInputCol(tokenizer.getOutputCol) .setOutputCol("features") val lr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.001) val pipeline = new Pipeline() .setStages(Array(tokenizer, hashingTF, lr)) // Fit the pipeline to training documents. val model = pipeline.fit(training) // Now we can optionally save the fitted pipeline to disk model.write.overwrite().save("/tmp/spark-logistic-regression-model") // We can also save this unfit pipeline to disk pipeline.write.overwrite().save("/tmp/unfit-lr-model") // And load it back in during production val sameModel = PipelineModel.load("/tmp/spark-logistic-regression-model") // Prepare test documents, which are unlabeled (id, text) tuples. val test = spark.createDataFrame(Seq( (4L, "spark i j k"), (5L, "l m n"), (6L, "spark hadoop spark"), (7L, "apache hadoop") )).toDF("id", "text") // Make predictions on test documents. model.transform(test) .select("id", "text", "probability", "prediction") .collect() .foreach { case Row(id: Long, text: String, prob: Vector, prediction: Double) => println(s"($id, $text) --> prob=$prob, prediction=$prediction") } } }
Example 34
Source File: LogisticRegressionPipeline.scala From Machine-Learning-with-Spark-Second-Edition with MIT License | 5 votes |
package org.stumbleuponclassifier import org.apache.log4j.Logger import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.evaluation.RegressionEvaluator import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit} import org.apache.spark.mllib.evaluation.RegressionMetrics import org.apache.spark.sql.DataFrame object LogisticRegressionPipeline { @transient lazy val logger = Logger.getLogger(getClass.getName) def logisticRegressionPipeline(vectorAssembler: VectorAssembler, dataFrame: DataFrame) = { val lr = new LogisticRegression() val paramGrid = new ParamGridBuilder() .addGrid(lr.regParam, Array(0.1, 0.01)) .addGrid(lr.fitIntercept) .addGrid(lr.elasticNetParam, Array(0.0, 0.25, 0.5, 0.75, 1.0)) .build() val pipeline = new Pipeline().setStages(Array(vectorAssembler, lr)) val trainValidationSplit = new TrainValidationSplit() .setEstimator(pipeline) .setEvaluator(new RegressionEvaluator) .setEstimatorParamMaps(paramGrid) // 80% of the data will be used for training and the remaining 20% for validation. .setTrainRatio(0.8) val Array(training, test) = dataFrame.randomSplit(Array(0.8, 0.2), seed = 12345) //val model = trainValidationSplit.fit(training) val model = trainValidationSplit.fit(dataFrame) //val holdout = model.transform(test).select("prediction","label") val holdout = model.transform(dataFrame).select("prediction","label") // have to do a type conversion for RegressionMetrics val rm = new RegressionMetrics(holdout.rdd.map(x => (x(0).asInstanceOf[Double], x(1).asInstanceOf[Double]))) logger.info("Test Metrics") logger.info("Test Explained Variance:") logger.info(rm.explainedVariance) logger.info("Test R^2 Coef:") logger.info(rm.r2) logger.info("Test MSE:") logger.info(rm.meanSquaredError) logger.info("Test RMSE:") logger.info(rm.rootMeanSquaredError) val totalPoints = dataFrame.count() val lrTotalCorrect = holdout.rdd.map(x => if (x(0).asInstanceOf[Double] == x(1).asInstanceOf[Double]) 1 else 0).sum() val accuracy = lrTotalCorrect/totalPoints println("Accuracy of LogisticRegression is: ", accuracy) } def savePredictions(predictions:DataFrame, testRaw:DataFrame, regressionMetrics: RegressionMetrics, filePath:String) = { println("Mean Squared Error:", regressionMetrics.meanSquaredError) println("Root Mean Squared Error:", regressionMetrics.rootMeanSquaredError) predictions .coalesce(1) .write.format("com.databricks.spark.csv") .option("header", "true") .save(filePath) } }
Example 35
Source File: LogisticRegressionWorkload.scala From spark-bench with Apache License 2.0 | 5 votes |
package com.ibm.sparktc.sparkbench.workload.ml import com.ibm.sparktc.sparkbench.utils.GeneralFunctions._ import com.ibm.sparktc.sparkbench.utils.SaveModes import com.ibm.sparktc.sparkbench.workload.{Workload, WorkloadDefaults} import org.apache.spark.ml.linalg.Vectors import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.evaluation.{BinaryClassificationEvaluator => BCE} import org.apache.spark.sql.{DataFrame, Row, SparkSession} // ¯\_(ツ)_/¯ // the logic for this workload came from: // https://github.com/szilard/benchm-ml/blob/master/1-linear/5-spark.txt // ¯\_(ツ)_/¯ case class LogisticRegressionResult( name: String, appid: String, start_time: Long, input: String, train_count: Long, train_time: Long, test_file: String, test_count: Long, test_time: Long, load_time: Long, count_time: Long, total_runtime: Long, area_under_roc: Double ) object LogisticRegressionWorkload extends WorkloadDefaults { val name = "lr-bml" def apply(m: Map[String, Any]) = new LogisticRegressionWorkload( input = Some(getOrThrow(m, "input").asInstanceOf[String]), output = getOrDefault[Option[String]](m, "workloadresultsoutputdir", None), saveMode = getOrDefault[String](m, "save-mode", SaveModes.error), testFile = getOrThrow(m, "testfile").asInstanceOf[String], numPartitions = getOrDefault[Int](m, "numpartitions", 32), cacheEnabled = getOrDefault[Boolean](m, "cacheenabled", true) ) } case class LogisticRegressionWorkload( input: Option[String], output: Option[String], saveMode: String, testFile: String, numPartitions: Int, cacheEnabled: Boolean ) extends Workload { private[ml] def load(filename: String)(implicit spark: SparkSession): DataFrame = { import spark.implicits._ spark.sparkContext.textFile(filename) .map { line => val vv = line.split(',').map(_.toDouble) val label = vv(0) val features = Vectors.dense(vv.slice(1, vv.length)).toSparse (label, features) }.toDF("label", "features") } private[ml] def ld(fn: String)(implicit spark: SparkSession) = time { val ds = load(fn)(spark).repartition(numPartitions) if (cacheEnabled) ds.cache ds } override def doWorkload(df: Option[DataFrame], spark: SparkSession): DataFrame = { val startTime = System.currentTimeMillis val (ltrainTime, d_train) = ld(s"${input.get}")(spark) val (ltestTime, d_test) = ld(s"$testFile")(spark) val (countTime, (trainCount, testCount)) = time { (d_train.count(), d_test.count()) } val (trainTime, model) = time(new LogisticRegression().setTol(1e-4).fit(d_train)) val (testTime, areaUnderROC) = time(new BCE().setMetricName("areaUnderROC").evaluate(model.transform(d_test))) val loadTime = ltrainTime + ltestTime //spark.createDataFrame(Seq(SleepResult("sleep", timestamp, t))) spark.createDataFrame(Seq(LogisticRegressionResult( name = "lr-bml", appid = spark.sparkContext.applicationId, startTime, input.get, train_count = trainCount, trainTime, testFile, test_count = testCount, testTime, loadTime, countTime, loadTime + trainTime + testTime, areaUnderROC ))) } }
Example 36
Source File: MulticlassLogisticRegressionWithElasticNetExample.scala From sparkoscope with Apache License 2.0 | 5 votes |
// scalastyle:off println package org.apache.spark.examples.ml // $example on$ import org.apache.spark.ml.classification.LogisticRegression // $example off$ import org.apache.spark.sql.SparkSession object MulticlassLogisticRegressionWithElasticNetExample { def main(args: Array[String]): Unit = { val spark = SparkSession .builder .appName("MulticlassLogisticRegressionWithElasticNetExample") .getOrCreate() // $example on$ // Load training data val training = spark .read .format("libsvm") .load("data/mllib/sample_multiclass_classification_data.txt") val lr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.3) .setElasticNetParam(0.8) // Fit the model val lrModel = lr.fit(training) // Print the coefficients and intercept for multinomial logistic regression println(s"Coefficients: \n${lrModel.coefficientMatrix}") println(s"Intercepts: ${lrModel.interceptVector}") // $example off$ spark.stop() } } // scalastyle:on println
Example 37
Source File: ClassifiersImpl.scala From spark_training with Apache License 2.0 | 5 votes |
package com.malaska.spark.training.machinelearning.common import org.apache.spark.ml.classification.{DecisionTreeClassifier, GBTClassifier, LogisticRegression, NaiveBayes} import org.apache.spark.ml.evaluation.{MulticlassClassificationEvaluator, RegressionEvaluator} import org.apache.spark.ml.regression.RandomForestRegressor import org.apache.spark.sql._ object ClassifiersImpl { def logisticRegression(trainingLabeledPointDf: DataFrame, testPercentage:Double): Unit = { val mlr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.3) .setElasticNetParam(0.8) val splits = trainingLabeledPointDf.randomSplit(Array(testPercentage, 1-testPercentage)) val model = mlr.fit(splits(0)) val trainTransformed = model.transform(splits(1)) val evaluator = new MulticlassClassificationEvaluator() .setLabelCol("label") .setPredictionCol("prediction") .setMetricName("accuracy") val accuracy = evaluator.evaluate(trainTransformed) println("Test set accuracy of logisticRegression = " + accuracy) //println(model) } def gbtClassifer(trainingLabeledPointDf: DataFrame, testPercentage:Double): Unit = { val gbt = new GBTClassifier() val splits = trainingLabeledPointDf.randomSplit(Array(testPercentage, 1-testPercentage)) val model = gbt.fit(splits(0)) val trainTransformed = model.transform(splits(1)) val evaluator = new MulticlassClassificationEvaluator() .setLabelCol("label") .setPredictionCol("prediction") .setMetricName("accuracy") val accuracy = evaluator.evaluate(trainTransformed) println("Test set accuracy of gbtClassifier = " + accuracy) //println(model) //println(model.toDebugString) } def randomForestRegressor(trainingLabeledPointDf: DataFrame, impurity:String, maxDepth:Int, maxBins:Int, testPercentage:Double): Unit = { val rf = new RandomForestRegressor() rf.setImpurity(impurity) rf.setMaxDepth(maxDepth) rf.setMaxBins(maxBins) val splits = trainingLabeledPointDf.randomSplit(Array(testPercentage, 1-testPercentage)) val model = rf.fit(splits(0)) val trainTransformed = model.transform(splits(1)) val evaluator = new MulticlassClassificationEvaluator() .setLabelCol("label") .setPredictionCol("prediction") .setMetricName("accuracy") val accuracy = evaluator.evaluate(trainTransformed) println("Test set accuracy of NaiveBayer = " + accuracy) } }
Example 38
Source File: TrainNewsClassWithLRDemo.scala From CkoocNLP with Apache License 2.0 | 5 votes |
package applications.mining import config.paramconf.ClassParams import functions.Preprocessor import org.apache.log4j.{Level, Logger} import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.feature._ import org.apache.spark.sql.SparkSession object TrainNewsClassWithLRDemo extends Serializable { def main(args: Array[String]): Unit = { Logger.getLogger("org").setLevel(Level.WARN) val spark = SparkSession .builder .master("local[2]") .appName("train news with LR Demo") .getOrCreate() val args = Array("ckooc-ml/data/classnews/train") val filePath = args(0) import spark.implicits._ val data = spark.sparkContext.textFile(filePath).flatMap { line => val tokens: Array[String] = line.split("\u00ef") if (tokens.length > 3) Some((tokens(0), tokens(1), tokens(2), tokens(3))) else None }.toDF("label", "title", "time", "content") data.persist() val preprocessor = new Preprocessor val pipeline = preprocessor.preprocess(data) //LR模型训练 val params = new ClassParams val logisticRegression = new LogisticRegression() .setTol(params.converTol) .setMaxIter(params.maxIteration) .setRegParam(params.regParam) .setElasticNetParam(params.elasticNetParam) .setLabelCol("indexedLabel") .setFeaturesCol("features") val indexModel = pipeline.getStages(1).asInstanceOf[StringIndexerModel] //索引标签化 val labelConverter = new IndexToString() .setLabels(indexModel.labels) .setInputCol(logisticRegression.getPredictionCol) .setOutputCol("predictedLabel") val stages = pipeline.getStages ++ Array(logisticRegression, labelConverter) pipeline.setStages(stages) val model = pipeline.fit(data) model.write.overwrite().save(params.LRModelPath) data.unpersist() spark.stop() } }