org.apache.spark.ml.param.StringArrayParam Scala Examples
The following examples show how to use org.apache.spark.ml.param.StringArrayParam.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: NerOverwriter.scala From spark-nlp with Apache License 2.0 | 5 votes |
package com.johnsnowlabs.nlp.annotators.ner import com.johnsnowlabs.nlp.{Annotation, AnnotatorModel} import org.apache.spark.ml.param.{Param, StringArrayParam} import org.apache.spark.ml.util.{DefaultParamsReadable, Identifiable} def getNewResult: String = $(newResult) setDefault( newResult -> "I-OVERWRITE" ) override def annotate(annotations: Seq[Annotation]): Seq[Annotation] = { var annotationsOverwritten = annotations annotationsOverwritten.map { tokenAnnotation => val stopWordsSet = $(stopWords).toSet if (stopWordsSet.contains(tokenAnnotation.metadata("word"))) { Annotation( outputAnnotatorType, tokenAnnotation.begin, tokenAnnotation.end, $(newResult), tokenAnnotation.metadata ) } else { Annotation( outputAnnotatorType, tokenAnnotation.begin, tokenAnnotation.end, tokenAnnotation.result, tokenAnnotation.metadata ) } } } } object NerOverwriter extends DefaultParamsReadable[NerOverwriter]
Example 2
Source File: NerConverter.scala From spark-nlp with Apache License 2.0 | 5 votes |
package com.johnsnowlabs.nlp.annotators.ner import com.johnsnowlabs.nlp.AnnotatorType.{CHUNK, DOCUMENT, NAMED_ENTITY, TOKEN} import com.johnsnowlabs.nlp.annotators.common.NerTagged import com.johnsnowlabs.nlp.{Annotation, AnnotatorModel, AnnotatorType, ParamsAndFeaturesReadable} import org.apache.spark.ml.param.{BooleanParam, StringArrayParam} import org.apache.spark.ml.util.Identifiable import scala.collection.Map def setPreservePosition(value: Boolean): this.type = set(preservePosition, value) setDefault( preservePosition -> true ) override def annotate(annotations: Seq[Annotation]): Seq[Annotation] = { val sentences = NerTagged.unpack(annotations) val docs = annotations.filter(a => a.annotatorType == AnnotatorType.DOCUMENT) val entities = sentences.zip(docs.zipWithIndex).flatMap { case (sentence, doc) => NerTagsEncoding.fromIOB(sentence, doc._1, sentenceIndex=doc._2, $(preservePosition)) } entities.filter(entity => get(whiteList).forall(validEntity => validEntity.contains(entity.entity))). zipWithIndex.map{case (entity, idx) => Annotation( outputAnnotatorType, entity.start, entity.end, entity.text, Map("entity" -> entity.entity, "sentence" -> entity.sentenceId, "chunk" -> idx.toString) ) } } } object NerConverter extends ParamsAndFeaturesReadable[NerConverter]
Example 3
Source File: OpIndexToStringNoFilter.scala From TransmogrifAI with BSD 3-Clause "New" or "Revised" License | 5 votes |
package com.salesforce.op.stages.impl.feature import com.salesforce.op.UID import com.salesforce.op.features.types._ import com.salesforce.op.stages.base.unary.UnaryTransformer import org.apache.spark.ml.attribute.{Attribute, NominalAttribute} import org.apache.spark.ml.param.StringArrayParam override def transformFn: (RealNN) => Text = { (input: RealNN) => { val inputColSchema = getInputSchema()(in1.name) // If the labels array is empty use column metadata val lbls = $(labels) val unseen = $(unseenName) val values = if (!isDefined(labels) || lbls.isEmpty) { Attribute.fromStructField(inputColSchema) .asInstanceOf[NominalAttribute].values.get } else { lbls } val idx = input.value.get.toInt if (0 <= idx && idx < values.length) { values(idx).toText } else { unseen.toText } } } } object OpIndexToStringNoFilter { val unseenDefault: String = "UnseenIndex" }
Example 4
Source File: IntermediateCacher.scala From albedo with MIT License | 5 votes |
package ws.vinta.albedo.transformers import org.apache.spark.ml.Transformer import org.apache.spark.ml.param.{ParamMap, StringArrayParam} import org.apache.spark.ml.util.{DefaultParamsReadable, DefaultParamsWritable, Identifiable} import org.apache.spark.sql.functions._ import org.apache.spark.sql.types._ import org.apache.spark.sql.{DataFrame, Dataset} class IntermediateCacher(override val uid: String) extends Transformer with DefaultParamsWritable { def this() = { this(Identifiable.randomUID("intermediateCacher")) } val inputCols = new StringArrayParam(this, "inputCols", "Input column names") def getInputCols: Array[String] = $(inputCols) def setInputCols(value: Array[String]): this.type = set(inputCols, value) setDefault(inputCols -> Array.empty[String]) override def transformSchema(schema: StructType): StructType = { schema } override def transform(dataset: Dataset[_]): DataFrame = { transformSchema(dataset.schema) val intermediateDF = if ($(inputCols).isEmpty) dataset.toDF() else dataset.select($(inputCols).map(col(_)): _*) intermediateDF.cache() } override def copy(extra: ParamMap): IntermediateCacher = { defaultCopy(extra) } } object IntermediateCacher extends DefaultParamsReadable[IntermediateCacher]
Example 5
Source File: UserRepoTransformer.scala From albedo with MIT License | 5 votes |
package ws.vinta.albedo.transformers import org.apache.spark.ml.Transformer import org.apache.spark.ml.param.{ParamMap, StringArrayParam} import org.apache.spark.ml.util.{DefaultParamsReadable, DefaultParamsWritable, Identifiable} import org.apache.spark.sql.types._ import org.apache.spark.sql.{DataFrame, Dataset} import ws.vinta.albedo.closures.UDFs._ class UserRepoTransformer(override val uid: String) extends Transformer with DefaultParamsWritable { def this() = { this(Identifiable.randomUID("userRepoTransformer")) } val inputCols: StringArrayParam = new StringArrayParam(this, "inputCols", "Input column names") def getInputCols: Array[String] = $(inputCols) def setInputCols(value: Array[String]): this.type = set(inputCols, value) override def transformSchema(schema: StructType): StructType = { $(inputCols).foreach((inputColName: String) => { require(schema.fieldNames.contains(inputColName), s"Input column $inputColName must exist.") }) val newFields: Array[StructField] = Array( StructField("repo_language_index_in_user_recent_repo_languages", IntegerType, nullable = false), StructField("repo_language_count_in_user_recent_repo_languages", IntegerType, nullable = false) ) StructType(schema.fields ++ newFields) } override def transform(dataset: Dataset[_]): DataFrame = { transformSchema(dataset.schema) import dataset.sparkSession.implicits._ dataset .withColumn("repo_language_index_in_user_recent_repo_languages", repoLanguageIndexInUserRecentRepoLanguagesUDF($"repo_language", $"user_recent_repo_languages")) .withColumn("repo_language_count_in_user_recent_repo_languages", repoLanguageCountInUserRecentRepoLanguagesUDF($"repo_language", $"user_recent_repo_languages")) } override def copy(extra: ParamMap): UserRepoTransformer = { defaultCopy(extra) } } object UserRepoTransformer extends DefaultParamsReadable[UserRepoTransformer]