org.apache.spark.sql.catalyst.catalog.CatalogTable Scala Examples
The following examples show how to use org.apache.spark.sql.catalyst.catalog.CatalogTable.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: ddl.scala From multi-tenancy-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.datasources import org.apache.spark.sql._ import org.apache.spark.sql.catalyst.TableIdentifier import org.apache.spark.sql.catalyst.catalog.{CatalogTable, CatalogUtils} import org.apache.spark.sql.catalyst.plans.QueryPlan import org.apache.spark.sql.catalyst.plans.logical.{Command, LogicalPlan} import org.apache.spark.sql.execution.command.RunnableCommand import org.apache.spark.sql.types._ case class CreateTable( tableDesc: CatalogTable, mode: SaveMode, query: Option[LogicalPlan]) extends Command { assert(tableDesc.provider.isDefined, "The table to be created must have a provider.") if (query.isEmpty) { assert( mode == SaveMode.ErrorIfExists || mode == SaveMode.Ignore, "create table without data insertion can only use ErrorIfExists or Ignore as SaveMode.") } override def innerChildren: Seq[QueryPlan[_]] = query.toSeq } case class CreateTempViewUsing( tableIdent: TableIdentifier, userSpecifiedSchema: Option[StructType], replace: Boolean, global: Boolean, provider: String, options: Map[String, String]) extends RunnableCommand { if (tableIdent.database.isDefined) { throw new AnalysisException( s"Temporary view '$tableIdent' should not have specified a database") } override def argString: String = { s"[tableIdent:$tableIdent " + userSpecifiedSchema.map(_ + " ").getOrElse("") + s"replace:$replace " + s"provider:$provider " + CatalogUtils.maskCredentials(options) } def run(sparkSession: SparkSession): Seq[Row] = { val dataSource = DataSource( sparkSession, userSpecifiedSchema = userSpecifiedSchema, className = provider, options = options) val catalog = sparkSession.sessionState.catalog val viewDefinition = Dataset.ofRows( sparkSession, LogicalRelation(dataSource.resolveRelation())).logicalPlan if (global) { catalog.createGlobalTempView(tableIdent.table, viewDefinition, replace) } else { catalog.createTempView(tableIdent.table, viewDefinition, replace) } Seq.empty[Row] } } case class RefreshTable(tableIdent: TableIdentifier) extends RunnableCommand { override def run(sparkSession: SparkSession): Seq[Row] = { // Refresh the given table's metadata. If this table is cached as an InMemoryRelation, // drop the original cached version and make the new version cached lazily. sparkSession.catalog.refreshTable(tableIdent.quotedString) Seq.empty[Row] } } case class RefreshResource(path: String) extends RunnableCommand { override def run(sparkSession: SparkSession): Seq[Row] = { sparkSession.catalog.refreshByPath(path) Seq.empty[Row] } }
Example 2
Source File: MetastoreRelationSuite.scala From sparkoscope with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.hive import org.apache.spark.sql.{QueryTest, Row} import org.apache.spark.sql.catalyst.TableIdentifier import org.apache.spark.sql.catalyst.catalog.{CatalogStorageFormat, CatalogTable, CatalogTableType} import org.apache.spark.sql.hive.test.TestHiveSingleton import org.apache.spark.sql.test.SQLTestUtils import org.apache.spark.sql.types.{IntegerType, StructField, StructType} class MetastoreRelationSuite extends QueryTest with SQLTestUtils with TestHiveSingleton { test("makeCopy and toJSON should work") { val table = CatalogTable( identifier = TableIdentifier("test", Some("db")), tableType = CatalogTableType.VIEW, storage = CatalogStorageFormat.empty, schema = StructType(StructField("a", IntegerType, true) :: Nil)) val relation = MetastoreRelation("db", "test")(table, null) // No exception should be thrown relation.makeCopy(Array("db", "test")) // No exception should be thrown relation.toJSON } test("SPARK-17409: Do Not Optimize Query in CTAS (Hive Serde Table) More Than Once") { withTable("bar") { withTempView("foo") { sql("select 0 as id").createOrReplaceTempView("foo") // If we optimize the query in CTAS more than once, the following saveAsTable will fail // with the error: `GROUP BY position 0 is not in select list (valid range is [1, 1])` sql("CREATE TABLE bar AS SELECT * FROM foo group by id") checkAnswer(spark.table("bar"), Row(0) :: Nil) val tableMetadata = spark.sessionState.catalog.getTableMetadata(TableIdentifier("bar")) assert(tableMetadata.provider == Some("hive"), "the expected table is a Hive serde table") } } } }
Example 3
Source File: LogicalRelation.scala From sparkoscope with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.datasources import org.apache.spark.sql.catalyst.analysis.MultiInstanceRelation import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.expressions.{Attribute, AttributeMap, AttributeReference} import org.apache.spark.sql.catalyst.plans.logical.{LeafNode, LogicalPlan, Statistics} import org.apache.spark.sql.sources.BaseRelation import org.apache.spark.util.Utils override def newInstance(): this.type = { LogicalRelation( relation, expectedOutputAttributes.map(_.map(_.newInstance())), catalogTable).asInstanceOf[this.type] } override def refresh(): Unit = relation match { case fs: HadoopFsRelation => fs.location.refresh() case _ => // Do nothing. } override def simpleString: String = s"Relation[${Utils.truncatedString(output, ",")}] $relation" }
Example 4
Source File: CatalogFileIndex.scala From sparkoscope with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.datasources import org.apache.hadoop.fs.Path import org.apache.spark.sql.SparkSession import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.types.StructType private class PrunedInMemoryFileIndex( sparkSession: SparkSession, tableBasePath: Path, fileStatusCache: FileStatusCache, override val partitionSpec: PartitionSpec) extends InMemoryFileIndex( sparkSession, partitionSpec.partitions.map(_.path), Map.empty, Some(partitionSpec.partitionColumns), fileStatusCache)
Example 5
Source File: ddl.scala From sparkoscope with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.datasources import org.apache.spark.sql._ import org.apache.spark.sql.catalyst.TableIdentifier import org.apache.spark.sql.catalyst.catalog.{CatalogTable, CatalogUtils} import org.apache.spark.sql.catalyst.plans.QueryPlan import org.apache.spark.sql.catalyst.plans.logical.{Command, LogicalPlan} import org.apache.spark.sql.execution.command.RunnableCommand import org.apache.spark.sql.types._ case class CreateTable( tableDesc: CatalogTable, mode: SaveMode, query: Option[LogicalPlan]) extends Command { assert(tableDesc.provider.isDefined, "The table to be created must have a provider.") if (query.isEmpty) { assert( mode == SaveMode.ErrorIfExists || mode == SaveMode.Ignore, "create table without data insertion can only use ErrorIfExists or Ignore as SaveMode.") } override def innerChildren: Seq[QueryPlan[_]] = query.toSeq } case class CreateTempViewUsing( tableIdent: TableIdentifier, userSpecifiedSchema: Option[StructType], replace: Boolean, global: Boolean, provider: String, options: Map[String, String]) extends RunnableCommand { if (tableIdent.database.isDefined) { throw new AnalysisException( s"Temporary view '$tableIdent' should not have specified a database") } override def argString: String = { s"[tableIdent:$tableIdent " + userSpecifiedSchema.map(_ + " ").getOrElse("") + s"replace:$replace " + s"provider:$provider " + CatalogUtils.maskCredentials(options) } def run(sparkSession: SparkSession): Seq[Row] = { val dataSource = DataSource( sparkSession, userSpecifiedSchema = userSpecifiedSchema, className = provider, options = options) val catalog = sparkSession.sessionState.catalog val viewDefinition = Dataset.ofRows( sparkSession, LogicalRelation(dataSource.resolveRelation())).logicalPlan if (global) { catalog.createGlobalTempView(tableIdent.table, viewDefinition, replace) } else { catalog.createTempView(tableIdent.table, viewDefinition, replace) } Seq.empty[Row] } } case class RefreshTable(tableIdent: TableIdentifier) extends RunnableCommand { override def run(sparkSession: SparkSession): Seq[Row] = { // Refresh the given table's metadata. If this table is cached as an InMemoryRelation, // drop the original cached version and make the new version cached lazily. sparkSession.catalog.refreshTable(tableIdent.quotedString) Seq.empty[Row] } } case class RefreshResource(path: String) extends RunnableCommand { override def run(sparkSession: SparkSession): Seq[Row] = { sparkSession.catalog.refreshByPath(path) Seq.empty[Row] } }
Example 6
Source File: CreateHiveTableAsSelectCommand.scala From multi-tenancy-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.hive.execution import scala.util.control.NonFatal import org.apache.spark.sql.{AnalysisException, Dataset, Row, SparkSession} import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.plans.logical.{InsertIntoTable, LogicalPlan, OverwriteOptions} import org.apache.spark.sql.execution.command.RunnableCommand import org.apache.spark.sql.hive.MetastoreRelation case class CreateHiveTableAsSelectCommand( tableDesc: CatalogTable, query: LogicalPlan, ignoreIfExists: Boolean) extends RunnableCommand { private val tableIdentifier = tableDesc.identifier override def innerChildren: Seq[LogicalPlan] = Seq(query) override def run(sparkSession: SparkSession): Seq[Row] = { lazy val metastoreRelation: MetastoreRelation = { import org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat import org.apache.hadoop.hive.serde2.`lazy`.LazySimpleSerDe import org.apache.hadoop.io.Text import org.apache.hadoop.mapred.TextInputFormat val withFormat = tableDesc.withNewStorage( inputFormat = tableDesc.storage.inputFormat.orElse(Some(classOf[TextInputFormat].getName)), outputFormat = tableDesc.storage.outputFormat .orElse(Some(classOf[HiveIgnoreKeyTextOutputFormat[Text, Text]].getName)), serde = tableDesc.storage.serde.orElse(Some(classOf[LazySimpleSerDe].getName)), compressed = tableDesc.storage.compressed) val withSchema = if (withFormat.schema.isEmpty) { // Hive doesn't support specifying the column list for target table in CTAS // However we don't think SparkSQL should follow that. tableDesc.copy(schema = query.output.toStructType) } else { withFormat } sparkSession.sessionState.catalog.createTable(withSchema, ignoreIfExists = false) // Get the Metastore Relation sparkSession.sessionState.catalog.lookupRelation(tableIdentifier) match { case r: MetastoreRelation => r } } // TODO ideally, we should get the output data ready first and then // add the relation into catalog, just in case of failure occurs while data // processing. if (sparkSession.sessionState.catalog.tableExists(tableIdentifier)) { if (ignoreIfExists) { // table already exists, will do nothing, to keep consistent with Hive } else { throw new AnalysisException(s"$tableIdentifier already exists.") } } else { try { sparkSession.sessionState.executePlan(InsertIntoTable( metastoreRelation, Map(), query, overwrite = OverwriteOptions(true), ifNotExists = false)).toRdd } catch { case NonFatal(e) => // drop the created table. sparkSession.sessionState.catalog.dropTable(tableIdentifier, ignoreIfNotExists = true, purge = false) throw e } } Seq.empty[Row] } override def argString: String = { s"[Database:${tableDesc.database}}, " + s"TableName: ${tableDesc.identifier.table}, " + s"InsertIntoHiveTable]" } }
Example 7
Source File: MetastoreRelationSuite.scala From multi-tenancy-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.hive import org.apache.spark.sql.{QueryTest, Row} import org.apache.spark.sql.catalyst.TableIdentifier import org.apache.spark.sql.catalyst.catalog.{CatalogStorageFormat, CatalogTable, CatalogTableType} import org.apache.spark.sql.hive.test.TestHiveSingleton import org.apache.spark.sql.test.SQLTestUtils import org.apache.spark.sql.types.{IntegerType, StructField, StructType} class MetastoreRelationSuite extends QueryTest with SQLTestUtils with TestHiveSingleton { test("makeCopy and toJSON should work") { val table = CatalogTable( identifier = TableIdentifier("test", Some("db")), tableType = CatalogTableType.VIEW, storage = CatalogStorageFormat.empty, schema = StructType(StructField("a", IntegerType, true) :: Nil)) val relation = MetastoreRelation("db", "test")(table, null) // No exception should be thrown relation.makeCopy(Array("db", "test")) // No exception should be thrown relation.toJSON } test("SPARK-17409: Do Not Optimize Query in CTAS (Hive Serde Table) More Than Once") { withTable("bar") { withTempView("foo") { sql("select 0 as id").createOrReplaceTempView("foo") // If we optimize the query in CTAS more than once, the following saveAsTable will fail // with the error: `GROUP BY position 0 is not in select list (valid range is [1, 1])` sql("CREATE TABLE bar AS SELECT * FROM foo group by id") checkAnswer(spark.table("bar"), Row(0) :: Nil) val tableMetadata = spark.sessionState.catalog.getTableMetadata(TableIdentifier("bar")) assert(tableMetadata.provider == Some("hive"), "the expected table is a Hive serde table") } } } }
Example 8
Source File: LogicalRelation.scala From multi-tenancy-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.datasources import org.apache.spark.sql.catalyst.analysis.MultiInstanceRelation import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.expressions.{Attribute, AttributeMap, AttributeReference} import org.apache.spark.sql.catalyst.plans.logical.{LeafNode, LogicalPlan, Statistics} import org.apache.spark.sql.sources.BaseRelation import org.apache.spark.util.Utils override def newInstance(): this.type = { LogicalRelation( relation, expectedOutputAttributes.map(_.map(_.newInstance())), catalogTable).asInstanceOf[this.type] } override def refresh(): Unit = relation match { case fs: HadoopFsRelation => fs.location.refresh() case _ => // Do nothing. } override def simpleString: String = s"Relation[${Utils.truncatedString(output, ",")}] $relation" }
Example 9
Source File: CatalogFileIndex.scala From multi-tenancy-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.datasources import org.apache.hadoop.fs.Path import org.apache.spark.sql.SparkSession import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.types.StructType private class PrunedInMemoryFileIndex( sparkSession: SparkSession, tableBasePath: Path, fileStatusCache: FileStatusCache, override val partitionSpec: PartitionSpec) extends InMemoryFileIndex( sparkSession, partitionSpec.partitions.map(_.path), Map.empty, Some(partitionSpec.partitionColumns), fileStatusCache)
Example 10
Source File: CreateHiveTableAsSelectCommand.scala From sparkoscope with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.hive.execution import scala.util.control.NonFatal import org.apache.spark.sql.{AnalysisException, Row, SparkSession} import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.plans.logical.{InsertIntoTable, LogicalPlan, OverwriteOptions} import org.apache.spark.sql.execution.command.RunnableCommand import org.apache.spark.sql.hive.MetastoreRelation case class CreateHiveTableAsSelectCommand( tableDesc: CatalogTable, query: LogicalPlan, ignoreIfExists: Boolean) extends RunnableCommand { private val tableIdentifier = tableDesc.identifier override def innerChildren: Seq[LogicalPlan] = Seq(query) override def run(sparkSession: SparkSession): Seq[Row] = { lazy val metastoreRelation: MetastoreRelation = { import org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat import org.apache.hadoop.hive.serde2.`lazy`.LazySimpleSerDe import org.apache.hadoop.io.Text import org.apache.hadoop.mapred.TextInputFormat val withFormat = tableDesc.withNewStorage( inputFormat = tableDesc.storage.inputFormat.orElse(Some(classOf[TextInputFormat].getName)), outputFormat = tableDesc.storage.outputFormat .orElse(Some(classOf[HiveIgnoreKeyTextOutputFormat[Text, Text]].getName)), serde = tableDesc.storage.serde.orElse(Some(classOf[LazySimpleSerDe].getName)), compressed = tableDesc.storage.compressed) val withSchema = if (withFormat.schema.isEmpty) { // Hive doesn't support specifying the column list for target table in CTAS // However we don't think SparkSQL should follow that. tableDesc.copy(schema = query.output.toStructType) } else { withFormat } sparkSession.sessionState.catalog.createTable(withSchema, ignoreIfExists = false) // Get the Metastore Relation sparkSession.sessionState.catalog.lookupRelation(tableIdentifier) match { case r: MetastoreRelation => r } } // TODO ideally, we should get the output data ready first and then // add the relation into catalog, just in case of failure occurs while data // processing. if (sparkSession.sessionState.catalog.tableExists(tableIdentifier)) { if (ignoreIfExists) { // table already exists, will do nothing, to keep consistent with Hive } else { throw new AnalysisException(s"$tableIdentifier already exists.") } } else { try { sparkSession.sessionState.executePlan(InsertIntoTable( metastoreRelation, Map(), query, overwrite = OverwriteOptions(true), ifNotExists = false)).toRdd } catch { case NonFatal(e) => // drop the created table. sparkSession.sessionState.catalog.dropTable(tableIdentifier, ignoreIfNotExists = true, purge = false) throw e } } Seq.empty[Row] } override def argString: String = { s"[Database:${tableDesc.database}}, " + s"TableName: ${tableDesc.identifier.table}, " + s"InsertIntoHiveTable]" } }
Example 11
Source File: compat.scala From jgit-spark-connector with Apache License 2.0 | 5 votes |
package tech.sourced.engine.compat import org.apache.spark.SPARK_VERSION import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.expressions.AttributeReference import org.apache.spark.sql.execution.datasources.{ LogicalRelation => SparkLogicalRelation } import org.apache.spark.sql.sources.BaseRelation import scala.reflect.runtime.{universe => ru} private[compat] object Compat { def apply[T](s22: T, s23: T): T = SPARK_VERSION match { case s if s.startsWith("2.2.") => s22 case s if s.startsWith("2.3.") => s23 case _ => throw new RuntimeException(s"Unsupported SPARK_VERSION: $SPARK_VERSION") } lazy val ClassMirror = ru.runtimeMirror(Compat.getClass.getClassLoader) } private[engine] object LogicalRelation { def apply(rel: BaseRelation, out: Seq[AttributeReference], catalog: Option[CatalogTable]): SparkLogicalRelation = applyImpl(rel, out, catalog) private lazy val applyImpl = Compat(applySpark22(_, _, _), applySpark23(_, _, _)) private lazy val typ = ru.typeOf[SparkLogicalRelation] private lazy val classSymbol = Compat.ClassMirror.reflectClass(typ.typeSymbol.asClass) private lazy val ctor = classSymbol.reflectConstructor(typ.decl(ru.termNames.CONSTRUCTOR).asMethod) def applySpark22(rel: BaseRelation, out: Seq[AttributeReference], catalog: Option[CatalogTable]): SparkLogicalRelation = ctor(rel, out, catalog).asInstanceOf[SparkLogicalRelation] def applySpark23(rel: BaseRelation, out: Seq[AttributeReference], catalog: Option[CatalogTable]): SparkLogicalRelation = ctor(rel, out, catalog, false).asInstanceOf[SparkLogicalRelation] def unapply(arg: SparkLogicalRelation) : Option[(BaseRelation, Seq[AttributeReference], Option[CatalogTable])] = unapplyImpl(arg) private lazy val unapplyImpl = Compat(unapplySpark22(_), unapplySpark23(_)) def unapplySpark22(arg: SparkLogicalRelation) : Option[(BaseRelation, Seq[AttributeReference], Option[CatalogTable])] = Some((arg.relation, arg.output, arg.catalogTable)) def unapplySpark23(arg: SparkLogicalRelation) : Option[(BaseRelation, Seq[AttributeReference], Option[CatalogTable])] = { val isStreaming = Compat.ClassMirror .reflect(arg) .reflectField(typ.decl(ru.TermName("isStreaming")).asTerm) .get .asInstanceOf[Boolean] if (isStreaming) { None } else { Some((arg.relation, arg.output, arg.catalogTable)) } } }
Example 12
Source File: AddSourceToAttributes.scala From jgit-spark-connector with Apache License 2.0 | 5 votes |
package tech.sourced.engine.rule import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.expressions.AttributeReference import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan import org.apache.spark.sql.catalyst.rules.Rule import org.apache.spark.sql.execution.datasources.LogicalRelation import org.apache.spark.sql.sources.BaseRelation import org.apache.spark.sql.types.MetadataBuilder import tech.sourced.engine.{GitRelation, MetadataRelation, Sources} import tech.sourced.engine.compat def apply(plan: LogicalPlan): LogicalPlan = plan transformUp { case compat.LogicalRelation(rel @ GitRelation(_, _, _, schemaSource), out, catalogTable) => withMetadata(rel, schemaSource, out, catalogTable) case compat.LogicalRelation( rel @ MetadataRelation(_, _, _, _, schemaSource), out, catalogTable) => withMetadata(rel, schemaSource, out, catalogTable) } private def withMetadata(relation: BaseRelation, schemaSource: Option[String], out: Seq[AttributeReference], catalogTable: Option[CatalogTable]): LogicalRelation = { val processedOut = schemaSource match { case Some(table) => out.map( _.withMetadata(new MetadataBuilder().putString(SOURCE, table).build() ).asInstanceOf[AttributeReference] ) case None => out } compat.LogicalRelation(relation, processedOut, catalogTable) } }
Example 13
Source File: InsertIntoHiveDirCommand.scala From Spark-2.3.1 with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.hive.execution import scala.language.existentials import org.apache.hadoop.fs.{FileSystem, Path} import org.apache.hadoop.hive.common.FileUtils import org.apache.hadoop.hive.ql.plan.TableDesc import org.apache.hadoop.hive.serde.serdeConstants import org.apache.hadoop.hive.serde2.`lazy`.LazySimpleSerDe import org.apache.hadoop.mapred._ import org.apache.spark.SparkException import org.apache.spark.sql.{Row, SparkSession} import org.apache.spark.sql.catalyst.TableIdentifier import org.apache.spark.sql.catalyst.catalog.{CatalogStorageFormat, CatalogTable} import org.apache.spark.sql.catalyst.expressions.Attribute import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan import org.apache.spark.sql.execution.SparkPlan import org.apache.spark.sql.hive.client.HiveClientImpl case class InsertIntoHiveDirCommand( isLocal: Boolean, storage: CatalogStorageFormat, query: LogicalPlan, overwrite: Boolean, outputColumns: Seq[Attribute]) extends SaveAsHiveFile { override def run(sparkSession: SparkSession, child: SparkPlan): Seq[Row] = { assert(storage.locationUri.nonEmpty) val hiveTable = HiveClientImpl.toHiveTable(CatalogTable( identifier = TableIdentifier(storage.locationUri.get.toString, Some("default")), tableType = org.apache.spark.sql.catalyst.catalog.CatalogTableType.VIEW, storage = storage, schema = query.schema )) hiveTable.getMetadata.put(serdeConstants.SERIALIZATION_LIB, storage.serde.getOrElse(classOf[LazySimpleSerDe].getName)) val tableDesc = new TableDesc( hiveTable.getInputFormatClass, hiveTable.getOutputFormatClass, hiveTable.getMetadata ) val hadoopConf = sparkSession.sessionState.newHadoopConf() val jobConf = new JobConf(hadoopConf) val targetPath = new Path(storage.locationUri.get) val writeToPath = if (isLocal) { val localFileSystem = FileSystem.getLocal(jobConf) localFileSystem.makeQualified(targetPath) } else { val qualifiedPath = FileUtils.makeQualified(targetPath, hadoopConf) val dfs = qualifiedPath.getFileSystem(jobConf) if (!dfs.exists(qualifiedPath)) { dfs.mkdirs(qualifiedPath.getParent) } qualifiedPath } val tmpPath = getExternalTmpPath(sparkSession, hadoopConf, writeToPath) val fileSinkConf = new org.apache.spark.sql.hive.HiveShim.ShimFileSinkDesc( tmpPath.toString, tableDesc, false) try { saveAsHiveFile( sparkSession = sparkSession, plan = child, hadoopConf = hadoopConf, fileSinkConf = fileSinkConf, outputLocation = tmpPath.toString, allColumns = outputColumns) val fs = writeToPath.getFileSystem(hadoopConf) if (overwrite && fs.exists(writeToPath)) { fs.listStatus(writeToPath).foreach { existFile => if (Option(existFile.getPath) != createdTempDir) fs.delete(existFile.getPath, true) } } fs.listStatus(tmpPath).foreach { tmpFile => fs.rename(tmpFile.getPath, writeToPath) } } catch { case e: Throwable => throw new SparkException( "Failed inserting overwrite directory " + storage.locationUri.get, e) } finally { deleteExternalTmpPath(hadoopConf) } Seq.empty[Row] } }
Example 14
Source File: CreateHiveTableAsSelectCommand.scala From Spark-2.3.1 with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.hive.execution import scala.util.control.NonFatal import org.apache.spark.sql.{AnalysisException, Row, SaveMode, SparkSession} import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.expressions.Attribute import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan import org.apache.spark.sql.execution.SparkPlan import org.apache.spark.sql.execution.command.DataWritingCommand case class CreateHiveTableAsSelectCommand( tableDesc: CatalogTable, query: LogicalPlan, outputColumns: Seq[Attribute], mode: SaveMode) extends DataWritingCommand { private val tableIdentifier = tableDesc.identifier override def run(sparkSession: SparkSession, child: SparkPlan): Seq[Row] = { val catalog = sparkSession.sessionState.catalog if (catalog.tableExists(tableIdentifier)) { assert(mode != SaveMode.Overwrite, s"Expect the table $tableIdentifier has been dropped when the save mode is Overwrite") if (mode == SaveMode.ErrorIfExists) { throw new AnalysisException(s"$tableIdentifier already exists.") } if (mode == SaveMode.Ignore) { // Since the table already exists and the save mode is Ignore, we will just return. return Seq.empty } InsertIntoHiveTable( tableDesc, Map.empty, query, overwrite = false, ifPartitionNotExists = false, outputColumns = outputColumns).run(sparkSession, child) } else { // TODO ideally, we should get the output data ready first and then // add the relation into catalog, just in case of failure occurs while data // processing. assert(tableDesc.schema.isEmpty) catalog.createTable(tableDesc.copy(schema = query.schema), ignoreIfExists = false) try { // Read back the metadata of the table which was created just now. val createdTableMeta = catalog.getTableMetadata(tableDesc.identifier) // For CTAS, there is no static partition values to insert. val partition = createdTableMeta.partitionColumnNames.map(_ -> None).toMap InsertIntoHiveTable( createdTableMeta, partition, query, overwrite = true, ifPartitionNotExists = false, outputColumns = outputColumns).run(sparkSession, child) } catch { case NonFatal(e) => // drop the created table. catalog.dropTable(tableIdentifier, ignoreIfNotExists = true, purge = false) throw e } } Seq.empty[Row] } override def argString: String = { s"[Database:${tableDesc.database}}, " + s"TableName: ${tableDesc.identifier.table}, " + s"InsertIntoHiveTable]" } }
Example 15
Source File: CatalogSuite.scala From Spark-2.3.1 with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.catalyst.analysis import org.apache.spark.sql.catalyst.TableIdentifier import org.apache.spark.sql.catalyst.catalog.{CatalogStorageFormat, CatalogTable, CatalogTableType} import org.apache.spark.sql.types.StructType class CatalogSuite extends AnalysisTest { test("desc table when owner is set to null") { val table = CatalogTable( identifier = TableIdentifier("tbl", Some("db1")), tableType = CatalogTableType.MANAGED, storage = CatalogStorageFormat.empty, owner = null, schema = new StructType().add("col1", "int").add("col2", "string"), provider = Some("parquet")) table.toLinkedHashMap } }
Example 16
Source File: LogicalRelation.scala From Spark-2.3.1 with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.datasources import org.apache.spark.sql.catalyst.analysis.MultiInstanceRelation import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.expressions.{AttributeMap, AttributeReference} import org.apache.spark.sql.catalyst.plans.QueryPlan import org.apache.spark.sql.catalyst.plans.logical.{LeafNode, LogicalPlan, Statistics} import org.apache.spark.sql.sources.BaseRelation import org.apache.spark.util.Utils override def newInstance(): LogicalRelation = { this.copy(output = output.map(_.newInstance())) } override def refresh(): Unit = relation match { case fs: HadoopFsRelation => fs.location.refresh() case _ => // Do nothing. } override def simpleString: String = s"Relation[${Utils.truncatedString(output, ",")}] $relation" } object LogicalRelation { def apply(relation: BaseRelation, isStreaming: Boolean = false): LogicalRelation = LogicalRelation(relation, relation.schema.toAttributes, None, isStreaming) def apply(relation: BaseRelation, table: CatalogTable): LogicalRelation = LogicalRelation(relation, relation.schema.toAttributes, Some(table), false) }
Example 17
Source File: ddl.scala From Spark-2.3.1 with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.datasources import java.util.Locale import org.apache.spark.sql._ import org.apache.spark.sql.catalyst.TableIdentifier import org.apache.spark.sql.catalyst.catalog.{CatalogTable, CatalogUtils} import org.apache.spark.sql.catalyst.expressions.Attribute import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan import org.apache.spark.sql.execution.command.{DDLUtils, RunnableCommand} import org.apache.spark.sql.types._ case class CreateTempViewUsing( tableIdent: TableIdentifier, userSpecifiedSchema: Option[StructType], replace: Boolean, global: Boolean, provider: String, options: Map[String, String]) extends RunnableCommand { if (tableIdent.database.isDefined) { throw new AnalysisException( s"Temporary view '$tableIdent' should not have specified a database") } override def argString: String = { s"[tableIdent:$tableIdent " + userSpecifiedSchema.map(_ + " ").getOrElse("") + s"replace:$replace " + s"provider:$provider " + CatalogUtils.maskCredentials(options) } override def run(sparkSession: SparkSession): Seq[Row] = { if (provider.toLowerCase(Locale.ROOT) == DDLUtils.HIVE_PROVIDER) { throw new AnalysisException("Hive data source can only be used with tables, " + "you can't use it with CREATE TEMP VIEW USING") } val dataSource = DataSource( sparkSession, userSpecifiedSchema = userSpecifiedSchema, className = provider, options = options) val catalog = sparkSession.sessionState.catalog val viewDefinition = Dataset.ofRows( sparkSession, LogicalRelation(dataSource.resolveRelation())).logicalPlan if (global) { catalog.createGlobalTempView(tableIdent.table, viewDefinition, replace) } else { catalog.createTempView(tableIdent.table, viewDefinition, replace) } Seq.empty[Row] } } case class RefreshTable(tableIdent: TableIdentifier) extends RunnableCommand { override def run(sparkSession: SparkSession): Seq[Row] = { // Refresh the given table's metadata. If this table is cached as an InMemoryRelation, // drop the original cached version and make the new version cached lazily. sparkSession.catalog.refreshTable(tableIdent.quotedString) Seq.empty[Row] } } case class RefreshResource(path: String) extends RunnableCommand { override def run(sparkSession: SparkSession): Seq[Row] = { sparkSession.catalog.refreshByPath(path) Seq.empty[Row] } }
Example 18
Source File: CatalogSuite.scala From XSQL with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.catalyst.analysis import org.apache.spark.sql.catalyst.TableIdentifier import org.apache.spark.sql.catalyst.catalog.{CatalogStorageFormat, CatalogTable, CatalogTableType} import org.apache.spark.sql.types.StructType class CatalogSuite extends AnalysisTest { test("desc table when owner is set to null") { val table = CatalogTable( identifier = TableIdentifier("tbl", Some("db1")), tableType = CatalogTableType.MANAGED, storage = CatalogStorageFormat.empty, owner = null, schema = new StructType().add("col1", "int").add("col2", "string"), provider = Some("parquet")) table.toLinkedHashMap } }
Example 19
Source File: MetastoreRelationSuite.scala From drizzle-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.hive import org.apache.spark.sql.{QueryTest, Row} import org.apache.spark.sql.catalyst.TableIdentifier import org.apache.spark.sql.catalyst.catalog.{CatalogStorageFormat, CatalogTable, CatalogTableType} import org.apache.spark.sql.hive.test.TestHiveSingleton import org.apache.spark.sql.test.SQLTestUtils import org.apache.spark.sql.types.{IntegerType, StructField, StructType} class MetastoreRelationSuite extends QueryTest with SQLTestUtils with TestHiveSingleton { test("makeCopy and toJSON should work") { val table = CatalogTable( identifier = TableIdentifier("test", Some("db")), tableType = CatalogTableType.VIEW, storage = CatalogStorageFormat.empty, schema = StructType(StructField("a", IntegerType, true) :: Nil)) val relation = MetastoreRelation("db", "test")(table, null) // No exception should be thrown relation.makeCopy(Array("db", "test")) // No exception should be thrown relation.toJSON } test("SPARK-17409: Do Not Optimize Query in CTAS (Hive Serde Table) More Than Once") { withTable("bar") { withTempView("foo") { sql("select 0 as id").createOrReplaceTempView("foo") // If we optimize the query in CTAS more than once, the following saveAsTable will fail // with the error: `GROUP BY position 0 is not in select list (valid range is [1, 1])` sql("CREATE TABLE bar AS SELECT * FROM foo group by id") checkAnswer(spark.table("bar"), Row(0) :: Nil) val tableMetadata = spark.sessionState.catalog.getTableMetadata(TableIdentifier("bar")) assert(tableMetadata.provider == Some("hive"), "the expected table is a Hive serde table") } } } }
Example 20
Source File: TableFileCatalog.scala From drizzle-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.datasources import org.apache.hadoop.fs.Path import org.apache.spark.sql.SparkSession import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.types.StructType private class PrunedTableFileCatalog( sparkSession: SparkSession, tableBasePath: Path, fileStatusCache: FileStatusCache, override val partitionSpec: PartitionSpec) extends ListingFileCatalog( sparkSession, partitionSpec.partitions.map(_.path), Map.empty, Some(partitionSpec.partitionColumns), fileStatusCache)
Example 21
Source File: LogicalRelation.scala From drizzle-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.datasources import org.apache.spark.sql.catalyst.analysis.MultiInstanceRelation import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.expressions.{Attribute, AttributeMap, AttributeReference} import org.apache.spark.sql.catalyst.plans.logical.{LeafNode, LogicalPlan, Statistics} import org.apache.spark.sql.sources.BaseRelation import org.apache.spark.util.Utils override def newInstance(): this.type = { LogicalRelation( relation, expectedOutputAttributes.map(_.map(_.newInstance())), catalogTable).asInstanceOf[this.type] } override def refresh(): Unit = relation match { case fs: HadoopFsRelation => fs.location.refresh() case _ => // Do nothing. } override def simpleString: String = s"Relation[${Utils.truncatedString(output, ",")}] $relation" }
Example 22
Source File: ddl.scala From drizzle-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.datasources import org.apache.spark.sql._ import org.apache.spark.sql.catalyst.TableIdentifier import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.plans.QueryPlan import org.apache.spark.sql.catalyst.plans.logical.{Command, LogicalPlan} import org.apache.spark.sql.execution.command.RunnableCommand import org.apache.spark.sql.types._ case class CreateTable( tableDesc: CatalogTable, mode: SaveMode, query: Option[LogicalPlan]) extends Command { assert(tableDesc.provider.isDefined, "The table to be created must have a provider.") if (query.isEmpty) { assert( mode == SaveMode.ErrorIfExists || mode == SaveMode.Ignore, "create table without data insertion can only use ErrorIfExists or Ignore as SaveMode.") } override def innerChildren: Seq[QueryPlan[_]] = query.toSeq } class CaseInsensitiveMap(map: Map[String, String]) extends Map[String, String] with Serializable { val baseMap = map.map(kv => kv.copy(_1 = kv._1.toLowerCase)) override def get(k: String): Option[String] = baseMap.get(k.toLowerCase) override def + [B1 >: String](kv: (String, B1)): Map[String, B1] = baseMap + kv.copy(_1 = kv._1.toLowerCase) override def iterator: Iterator[(String, String)] = baseMap.iterator override def -(key: String): Map[String, String] = baseMap - key.toLowerCase }
Example 23
Source File: SparkWrapper.scala From tispark with Apache License 2.0 | 5 votes |
package com.pingcap.tispark import org.apache.spark.sql.catalyst.catalog.{CatalogTable, SessionCatalog} import org.apache.spark.sql.catalyst.expressions.{Alias, AttributeReference, Expression} import org.apache.spark.sql.catalyst.plans.logical.{LogicalPlan, SubqueryAlias} import org.apache.spark.sql.types.{DataType, Metadata} object SparkWrapper { def getVersion: String = { "SparkWrapper-2.3" } def newSubqueryAlias(identifier: String, child: LogicalPlan): SubqueryAlias = { SubqueryAlias(identifier, child) } def newAlias(child: Expression, name: String): Alias = { Alias(child, name)() } def newAttributeReference( name: String, dataType: DataType, nullable: Boolean, metadata: Metadata): AttributeReference = { AttributeReference(name, dataType, nullable, metadata)() } def callSessionCatalogCreateTable( obj: SessionCatalog, tableDefinition: CatalogTable, ignoreIfExists: Boolean): Unit = { obj.createTable(tableDefinition, ignoreIfExists) } }
Example 24
Source File: SparkWrapper.scala From tispark with Apache License 2.0 | 5 votes |
package com.pingcap.tispark import org.apache.spark.sql.catalyst.catalog.{CatalogTable, SessionCatalog} import org.apache.spark.sql.catalyst.expressions.{Alias, AttributeReference, Expression} import org.apache.spark.sql.catalyst.plans.logical.{LogicalPlan, SubqueryAlias} import org.apache.spark.sql.types.{DataType, Metadata} object SparkWrapper { def getVersion: String = { "SparkWrapper-2.4" } def newSubqueryAlias(identifier: String, child: LogicalPlan): SubqueryAlias = { SubqueryAlias(identifier, child) } def newAlias(child: Expression, name: String): Alias = { Alias(child, name)() } def newAttributeReference( name: String, dataType: DataType, nullable: Boolean, metadata: Metadata): AttributeReference = { AttributeReference(name, dataType, nullable, metadata)() } def callSessionCatalogCreateTable( obj: SessionCatalog, tableDefinition: CatalogTable, ignoreIfExists: Boolean): Unit = { obj.createTable(tableDefinition, ignoreIfExists) } }
Example 25
Source File: CreateHiveTableAsSelectCommand.scala From XSQL with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.hive.execution import scala.util.control.NonFatal import org.apache.spark.sql.{AnalysisException, Row, SaveMode, SparkSession} import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.expressions.Attribute import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan import org.apache.spark.sql.execution.SparkPlan import org.apache.spark.sql.execution.command.DataWritingCommand case class CreateHiveTableAsSelectCommand( tableDesc: CatalogTable, query: LogicalPlan, outputColumnNames: Seq[String], mode: SaveMode) extends DataWritingCommand { private val tableIdentifier = tableDesc.identifier override def run(sparkSession: SparkSession, child: SparkPlan): Seq[Row] = { val catalog = sparkSession.sessionState.catalog if (catalog.tableExists(tableIdentifier)) { assert(mode != SaveMode.Overwrite, s"Expect the table $tableIdentifier has been dropped when the save mode is Overwrite") if (mode == SaveMode.ErrorIfExists) { throw new AnalysisException(s"$tableIdentifier already exists.") } if (mode == SaveMode.Ignore) { // Since the table already exists and the save mode is Ignore, we will just return. return Seq.empty } // For CTAS, there is no static partition values to insert. val partition = tableDesc.partitionColumnNames.map(_ -> None).toMap InsertIntoHiveTable( tableDesc, partition, query, overwrite = false, ifPartitionNotExists = false, outputColumnNames = outputColumnNames).run(sparkSession, child) } else { // TODO ideally, we should get the output data ready first and then // add the relation into catalog, just in case of failure occurs while data // processing. assert(tableDesc.schema.isEmpty) catalog.createTable( tableDesc.copy(schema = outputColumns.toStructType), ignoreIfExists = false) try { // Read back the metadata of the table which was created just now. val createdTableMeta = catalog.getTableMetadata(tableDesc.identifier) // For CTAS, there is no static partition values to insert. val partition = createdTableMeta.partitionColumnNames.map(_ -> None).toMap InsertIntoHiveTable( createdTableMeta, partition, query, overwrite = true, ifPartitionNotExists = false, outputColumnNames = outputColumnNames).run(sparkSession, child) } catch { case NonFatal(e) => // drop the created table. catalog.dropTable(tableIdentifier, ignoreIfNotExists = true, purge = false) throw e } } Seq.empty[Row] } override def argString: String = { s"[Database:${tableDesc.database}, " + s"TableName: ${tableDesc.identifier.table}, " + s"InsertIntoHiveTable]" } }
Example 26
Source File: XSQLCreateHiveTableAsSelectCommand.scala From XSQL with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.xsql.execution.command import scala.util.control.NonFatal import org.apache.spark.sql.{AnalysisException, Row, SaveMode, SparkSession} import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.expressions.Attribute import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan import org.apache.spark.sql.execution.SparkPlan import org.apache.spark.sql.execution.command.DataWritingCommand import org.apache.spark.sql.xsql.XSQLSessionCatalog case class XSQLCreateHiveTableAsSelectCommand( tableDesc: CatalogTable, query: LogicalPlan, outputColumnNames: Seq[String], mode: SaveMode) extends DataWritingCommand { override def run(sparkSession: SparkSession, child: SparkPlan): Seq[Row] = { val catalog = sparkSession.sessionState.catalog.asInstanceOf[XSQLSessionCatalog] val tableIdentifier = catalog.getUsedTableIdentifier(tableDesc.identifier) val newTableDesc = tableDesc.copy(identifier = tableIdentifier) if (catalog.tableExists(tableIdentifier)) { assert( mode != SaveMode.Overwrite, s"Expect the table $tableIdentifier has been dropped when the save mode is Overwrite") if (mode == SaveMode.ErrorIfExists) { throw new AnalysisException(s"$tableIdentifier already exists.") } if (mode == SaveMode.Ignore) { // Since the table already exists and the save mode is Ignore, we will just return. return Seq.empty } XSQLInsertIntoHiveTable( newTableDesc, Map.empty, query, overwrite = false, ifPartitionNotExists = false, outputColumnNames = outputColumnNames).run(sparkSession, child) } else { // TODO ideally, we should get the output data ready first and then // add the relation into catalog, just in case of failure occurs while data // processing. assert(newTableDesc.schema.isEmpty) catalog.createTable(newTableDesc.copy(schema = query.schema), ignoreIfExists = false) try { // Read back the metadata of the table which was created just now. val createdTableMeta = catalog.getTableMetadata(newTableDesc.identifier) // For CTAS, there is no static partition values to insert. val partition = createdTableMeta.partitionColumnNames.map(_ -> None).toMap XSQLInsertIntoHiveTable( createdTableMeta, partition, query, overwrite = true, ifPartitionNotExists = false, outputColumnNames = outputColumnNames).run(sparkSession, child) } catch { case NonFatal(e) => // drop the created table. catalog.dropTable(tableIdentifier, ignoreIfNotExists = true, purge = false) throw e } } Seq.empty[Row] } override def argString: String = { s"[TableName: ${tableDesc.identifier.table}, " + s"InsertIntoHiveTable]" } }
Example 27
Source File: CreateHiveTableAsSelectCommand.scala From drizzle-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.hive.execution import scala.util.control.NonFatal import org.apache.spark.sql.{AnalysisException, Row, SparkSession} import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.plans.logical.{InsertIntoTable, LogicalPlan} import org.apache.spark.sql.execution.command.RunnableCommand import org.apache.spark.sql.hive.MetastoreRelation case class CreateHiveTableAsSelectCommand( tableDesc: CatalogTable, query: LogicalPlan, ignoreIfExists: Boolean) extends RunnableCommand { private val tableIdentifier = tableDesc.identifier override def innerChildren: Seq[LogicalPlan] = Seq(query) override def run(sparkSession: SparkSession): Seq[Row] = { lazy val metastoreRelation: MetastoreRelation = { import org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat import org.apache.hadoop.hive.serde2.`lazy`.LazySimpleSerDe import org.apache.hadoop.io.Text import org.apache.hadoop.mapred.TextInputFormat val withFormat = tableDesc.withNewStorage( inputFormat = tableDesc.storage.inputFormat.orElse(Some(classOf[TextInputFormat].getName)), outputFormat = tableDesc.storage.outputFormat .orElse(Some(classOf[HiveIgnoreKeyTextOutputFormat[Text, Text]].getName)), serde = tableDesc.storage.serde.orElse(Some(classOf[LazySimpleSerDe].getName)), compressed = tableDesc.storage.compressed) val withSchema = if (withFormat.schema.isEmpty) { // Hive doesn't support specifying the column list for target table in CTAS // However we don't think SparkSQL should follow that. tableDesc.copy(schema = query.output.toStructType) } else { withFormat } sparkSession.sessionState.catalog.createTable(withSchema, ignoreIfExists = false) // Get the Metastore Relation sparkSession.sessionState.catalog.lookupRelation(tableIdentifier) match { case r: MetastoreRelation => r } } // TODO ideally, we should get the output data ready first and then // add the relation into catalog, just in case of failure occurs while data // processing. if (sparkSession.sessionState.catalog.tableExists(tableIdentifier)) { if (ignoreIfExists) { // table already exists, will do nothing, to keep consistent with Hive } else { throw new AnalysisException(s"$tableIdentifier already exists.") } } else { try { sparkSession.sessionState.executePlan(InsertIntoTable( metastoreRelation, Map(), query, overwrite = true, ifNotExists = false)).toRdd } catch { case NonFatal(e) => // drop the created table. sparkSession.sessionState.catalog.dropTable(tableIdentifier, ignoreIfNotExists = true, purge = false) throw e } } Seq.empty[Row] } override def argString: String = { s"[Database:${tableDesc.database}}, " + s"TableName: ${tableDesc.identifier.table}, " + s"InsertIntoHiveTable]" } }
Example 28
Source File: LogicalRelation.scala From XSQL with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.datasources import org.apache.spark.sql.catalyst.analysis.MultiInstanceRelation import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.expressions.{AttributeMap, AttributeReference} import org.apache.spark.sql.catalyst.plans.QueryPlan import org.apache.spark.sql.catalyst.plans.logical.{LeafNode, LogicalPlan, Statistics} import org.apache.spark.sql.sources.BaseRelation import org.apache.spark.util.Utils override def newInstance(): LogicalRelation = { this.copy(output = output.map(_.newInstance())) } override def refresh(): Unit = relation match { case fs: HadoopFsRelation => fs.location.refresh() case _ => // Do nothing. } override def simpleString: String = s"Relation[${Utils.truncatedString(output, ",")}] $relation" } object LogicalRelation { def apply(relation: BaseRelation, isStreaming: Boolean = false): LogicalRelation = LogicalRelation(relation, relation.schema.toAttributes, None, isStreaming) def apply(relation: BaseRelation, table: CatalogTable): LogicalRelation = LogicalRelation(relation, relation.schema.toAttributes, Some(table), false) }
Example 29
Source File: CatalogFileIndex.scala From XSQL with Apache License 2.0 | 5 votes |
package org.apache.spark.sql.execution.datasources import java.net.URI import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.Path import org.apache.spark.sql.SparkSession import org.apache.spark.sql.catalyst.catalog.CatalogTable import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.types.StructType private class PrunedInMemoryFileIndex( sparkSession: SparkSession, tableBasePath: Path, fileStatusCache: FileStatusCache, override val partitionSpec: PartitionSpec, override val metadataOpsTimeNs: Option[Long]) extends InMemoryFileIndex( sparkSession, partitionSpec.partitions.map(_.path), Map.empty, Some(partitionSpec.partitionColumns), fileStatusCache)
Example 30
package org.apache.spark.sql.execution.datasources import java.util.Locale import org.apache.spark.sql._ import org.apache.spark.sql.catalyst.TableIdentifier import org.apache.spark.sql.catalyst.catalog.{CatalogTable, CatalogUtils} import org.apache.spark.sql.catalyst.expressions.Attribute import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan import org.apache.spark.sql.execution.command.{DDLUtils, RunnableCommand} import org.apache.spark.sql.types._ case class CreateTempViewUsing( tableIdent: TableIdentifier, userSpecifiedSchema: Option[StructType], replace: Boolean, global: Boolean, provider: String, options: Map[String, String]) extends RunnableCommand { if (tableIdent.database.isDefined) { throw new AnalysisException( s"Temporary view '$tableIdent' should not have specified a database") } override def argString: String = { s"[tableIdent:$tableIdent " + userSpecifiedSchema.map(_ + " ").getOrElse("") + s"replace:$replace " + s"provider:$provider " + CatalogUtils.maskCredentials(options) } override def run(sparkSession: SparkSession): Seq[Row] = { if (provider.toLowerCase(Locale.ROOT) == DDLUtils.HIVE_PROVIDER) { throw new AnalysisException("Hive data source can only be used with tables, " + "you can't use it with CREATE TEMP VIEW USING") } val dataSource = DataSource( sparkSession, userSpecifiedSchema = userSpecifiedSchema, className = provider, options = options) val catalog = sparkSession.sessionState.catalog val viewDefinition = Dataset.ofRows( sparkSession, LogicalRelation(dataSource.resolveRelation())).logicalPlan if (global) { catalog.createGlobalTempView(tableIdent.table, viewDefinition, replace) } else { catalog.createTempView(tableIdent.table, viewDefinition, replace) } Seq.empty[Row] } } case class RefreshTable(tableIdent: TableIdentifier) extends RunnableCommand { override def run(sparkSession: SparkSession): Seq[Row] = { // Refresh the given table's metadata. If this table is cached as an InMemoryRelation, // drop the original cached version and make the new version cached lazily. sparkSession.catalog.refreshTable(tableIdent.quotedString) Seq.empty[Row] } } case class RefreshResource(path: String) extends RunnableCommand { override def run(sparkSession: SparkSession): Seq[Row] = { sparkSession.catalog.refreshByPath(path) Seq.empty[Row] } }
Example 31
Source File: CatalogUtils.scala From spark-atlas-connector with Apache License 2.0 | 5 votes |
package com.hortonworks.spark.atlas.utils import java.net.URI import org.apache.spark.sql.catalyst.TableIdentifier import org.apache.spark.sql.catalyst.catalog.{CatalogDatabase, CatalogStorageFormat, CatalogTable, CatalogTableType} import org.apache.spark.sql.types.StructType object CatalogUtils { def createDB(name: String, location: String): CatalogDatabase = { CatalogDatabase(name, "", new URI(location), Map.empty) } def createStorageFormat( locationUri: Option[URI] = None, inputFormat: Option[String] = None, outputFormat: Option[String] = None, serd: Option[String] = None, compressed: Boolean = false, properties: Map[String, String] = Map.empty): CatalogStorageFormat = { CatalogStorageFormat(locationUri, inputFormat, outputFormat, serd, compressed, properties) } def createTable( db: String, table: String, schema: StructType, storage: CatalogStorageFormat, isHiveTable: Boolean = false): CatalogTable = { CatalogTable( TableIdentifier(table, Some(db)), CatalogTableType.MANAGED, storage, schema, provider = if (isHiveTable) Some("hive") else None) } }
Example 32
Source File: AtlasEntityUtils.scala From spark-atlas-connector with Apache License 2.0 | 5 votes |
package com.hortonworks.spark.atlas.types import org.apache.spark.sql.catalyst.catalog.{CatalogDatabase, CatalogStorageFormat, CatalogTable} import com.hortonworks.spark.atlas.{AtlasClientConf, SACAtlasEntityWithDependencies, SACAtlasReferenceable} import com.hortonworks.spark.atlas.utils.{Logging, SparkUtils} import org.apache.spark.ml.Pipeline trait AtlasEntityUtils extends Logging { def conf: AtlasClientConf def clusterName: String = conf.get(AtlasClientConf.CLUSTER_NAME) def sparkDbType: String = metadata.DB_TYPE_STRING def sparkDbToEntity(dbDefinition: CatalogDatabase): SACAtlasEntityWithDependencies = { internal.sparkDbToEntity(dbDefinition, clusterName, SparkUtils.currUser()) } def sparkDbUniqueAttribute(db: String): String = { internal.sparkDbUniqueAttribute(db) } def sparkStorageFormatType: String = metadata.STORAGEDESC_TYPE_STRING def sparkStorageFormatToEntity( storageFormat: CatalogStorageFormat, db: String, table: String): SACAtlasEntityWithDependencies = { internal.sparkStorageFormatToEntity(storageFormat, db, table) } def sparkStorageFormatUniqueAttribute(db: String, table: String): String = { internal.sparkStorageFormatUniqueAttribute(db, table) } def sparkTableType: String = metadata.TABLE_TYPE_STRING def tableToEntity( tableDefinition: CatalogTable, mockDbDefinition: Option[CatalogDatabase] = None): SACAtlasReferenceable = { if (SparkUtils.usingRemoteMetastoreService()) { external.hiveTableToReference(tableDefinition, clusterName, mockDbDefinition) } else { internal.sparkTableToEntity(tableDefinition, clusterName, mockDbDefinition) } } def sparkTableToEntity( tableDefinition: CatalogTable, mockDbDefinition: Option[CatalogDatabase] = None): SACAtlasReferenceable = { internal.sparkTableToEntity(tableDefinition, clusterName, mockDbDefinition) } def sparkTableToEntityForAlterTable( tableDefinition: CatalogTable, mockDbDefinition: Option[CatalogDatabase] = None): SACAtlasReferenceable = { internal.sparkTableToEntityForAlterTable(tableDefinition, clusterName, mockDbDefinition) } def sparkTableUniqueAttribute(db: String, table: String): String = { internal.sparkTableUniqueAttribute(db, table) } def pipelineUniqueAttribute(pipeline: Pipeline): String = { pipeline.uid } def processType: String = metadata.PROCESS_TYPE_STRING def processUniqueAttribute(executionId: Long): String = internal.sparkProcessUniqueAttribute(executionId) // If there is cycle, return empty output entity list def cleanOutput( inputs: Seq[SACAtlasReferenceable], outputs: Seq[SACAtlasReferenceable]): List[SACAtlasReferenceable] = { val qualifiedNames = inputs.map(_.qualifiedName) val isCycle = outputs.exists(x => qualifiedNames.contains(x.qualifiedName)) if (isCycle) { logWarn("Detected cycle - same entity observed to both input and output. " + "Discarding output entities as Atlas doesn't support cycle.") List.empty } else { outputs.toList } } }
Example 33
Source File: TestUtils.scala From spark-atlas-connector with Apache License 2.0 | 5 votes |
package com.hortonworks.spark.atlas import java.net.URI import org.apache.spark.sql.catalyst.TableIdentifier import org.apache.spark.sql.catalyst.catalog.{CatalogDatabase, CatalogStorageFormat, CatalogTable, CatalogTableType} import org.apache.spark.sql.types.StructType import com.hortonworks.spark.atlas.utils.SparkUtils import org.apache.atlas.model.instance.AtlasObjectId object TestUtils { def createDB(name: String, location: String): CatalogDatabase = { CatalogDatabase(name, "", new URI(location), Map.empty) } def createStorageFormat( locationUri: Option[URI] = None, inputFormat: Option[String] = None, outputFormat: Option[String] = None, serd: Option[String] = None, compressed: Boolean = false, properties: Map[String, String] = Map.empty): CatalogStorageFormat = { CatalogStorageFormat(locationUri, inputFormat, outputFormat, serd, compressed, properties) } def createTable( db: String, table: String, schema: StructType, storage: CatalogStorageFormat, isHiveTable: Boolean = false): CatalogTable = { CatalogTable( TableIdentifier(table, Some(db)), CatalogTableType.MANAGED, storage, schema, provider = if (isHiveTable) Some("hive") else None, bucketSpec = None, owner = SparkUtils.currUser()) } def assertSubsetOf[T](set: Set[T], subset: Set[T]): Unit = { assert(subset.subsetOf(set), s"$subset is not a subset of $set") } def findEntity( entities: Seq[SACAtlasReferenceable], objId: AtlasObjectId): Option[SACAtlasReferenceable] = { entities.find(p => p.asObjectId == objId) } def findEntities( entities: Seq[SACAtlasReferenceable], objIds: Seq[AtlasObjectId]): Seq[SACAtlasReferenceable] = { entities.filter(p => objIds.contains(p.asObjectId)) } }
Example 34
Source File: CreateDataSourceTableAsSelectHarvesterSuite.scala From spark-atlas-connector with Apache License 2.0 | 5 votes |
package com.hortonworks.spark.atlas.sql import com.hortonworks.spark.atlas.types.metadata import scala.util.Random import com.hortonworks.spark.atlas.{SACAtlasEntityWithDependencies, WithHiveSupport} import com.hortonworks.spark.atlas.utils.SparkUtils import org.apache.atlas.model.instance.AtlasEntity import org.apache.spark.sql.SaveMode import org.apache.spark.sql.catalyst.catalog.{CatalogTable, CatalogTableType} import org.apache.spark.sql.execution.command.CreateDataSourceTableAsSelectCommand import org.apache.spark.sql.execution.datasources.DataSource import org.apache.spark.sql.types.StructType import org.scalatest.{FunSuite, Matchers} // This is not leveraging BaseHarvesterSuite, as it doesn't need to be tested with // both non-remote HMS and remote HMS cases. class CreateDataSourceTableAsSelectHarvesterSuite extends FunSuite with Matchers with WithHiveSupport { private val sourceTblName = "source_" + Random.nextInt(100000) override protected def beforeAll(): Unit = { super.beforeAll() sparkSession.sql(s"CREATE TABLE $sourceTblName (name string, age int)") } test("saveAsTable should have output entity having table details - parquet") { testWithProvider("parquet") } test("saveAsTable should have output entity having table details - hive") { val entity = testWithProvider("hive") assert(entity.getAttribute("partitionProvider") == "Catalog") } def testWithProvider(provider: String): AtlasEntity = { val destTblName = "dest1_" + Random.nextInt(100000) val df = sparkSession.sql(s"SELECT * FROM $sourceTblName") // The codes below look after DataFrameWriter.saveAsTable codes as of Spark 2.4. // It uses internal APIs for this test. If the compatibility is broken, we should better // just remove this test. val tableIdent = df.sparkSession.sessionState.sqlParser.parseTableIdentifier(destTblName) val storage = DataSource.buildStorageFormatFromOptions(Map("path" -> "/tmp/foo")) val tableDesc = CatalogTable( identifier = tableIdent, tableType = CatalogTableType.EXTERNAL, storage = storage, schema = new StructType, provider = Some(provider), partitionColumnNames = Nil, bucketSpec = None) val cmd = CreateDataSourceTableAsSelectCommand( tableDesc, SaveMode.ErrorIfExists, df.queryExecution.logical, Seq("name", "age")) val newTable = tableDesc.copy( storage = tableDesc.storage.copy(), schema = df.schema) sparkSession.sessionState.catalog.createTable( newTable, ignoreIfExists = false, validateLocation = false) val qd = QueryDetail(df.queryExecution, 0L) val entities = CommandsHarvester.CreateDataSourceTableAsSelectHarvester.harvest(cmd, qd) val processDeps = entities.head.asInstanceOf[SACAtlasEntityWithDependencies].dependencies val maybeEntity = processDeps.find(_.typeName == metadata.TABLE_TYPE_STRING) .map(_.asInstanceOf[SACAtlasEntityWithDependencies].entity) assert(maybeEntity.isDefined, s"Output entity for table [$destTblName] was not found.") assert(maybeEntity.get.getAttribute("name") == destTblName) assert(maybeEntity.get.getAttribute("owner") == SparkUtils.currUser()) assert(maybeEntity.get.getAttribute("schemaDesc") == "struct<name:string,age:int>") assert(maybeEntity.get.getAttribute("provider") == provider) maybeEntity.get } }