org.apache.spark.streaming.Milliseconds Scala Examples

The following examples show how to use org.apache.spark.streaming.Milliseconds. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
Example 1
Source File: PubNubWordCount.scala    From bahir   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.examples.streaming.pubnub

import com.google.gson.JsonParser
import com.pubnub.api.PNConfiguration
import com.pubnub.api.enums.PNReconnectionPolicy

import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.Milliseconds
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.dstream.ReceiverInputDStream
import org.apache.spark.streaming.pubnub.{PubNubUtils, SparkPubNubMessage}


object PubNubWordCount {
  def main(args: Array[String]): Unit = {
    if (args.length != 3) {
      // scalastyle:off println
      System.err.println(
        """
          |Usage: PubNubWordCount <subscribeKey> <channel>
          |
          |     <subscribeKey>        subscribe key
          |     <channel>             channel
          |     <aggregationPeriodMS> aggregation period in milliseconds
          |
        """.stripMargin
      )
      // scalastyle:on
      System.exit(1)
    }

    val Seq(subscribeKey, channel, aggregationPeriod) = args.toSeq

    val sparkConf = new SparkConf().setAppName("PubNubWordCount").setMaster("local[2]")
    val ssc = new StreamingContext(sparkConf, Milliseconds(aggregationPeriod.toLong))

    val config = new PNConfiguration
    config.setSubscribeKey(subscribeKey)
    config.setSecure(true)
    config.setReconnectionPolicy(PNReconnectionPolicy.LINEAR)

    val pubNubStream: ReceiverInputDStream[SparkPubNubMessage] = PubNubUtils.createStream(
      ssc, config, Seq(channel), Seq(), None, StorageLevel.MEMORY_AND_DISK_SER_2)

    val wordCounts = pubNubStream
        .flatMap(
          message => new JsonParser().parse(message.getPayload)
            .getAsJsonObject.get("text").getAsString.split("\\s")
        )
        .map(word => (word, 1))
        .reduceByKey(_ + _)

    wordCounts.print()

    ssc.start()
    ssc.awaitTermination()
  }
} 
Example 2
Source File: KafkaStreamSuite.scala    From BigDatalog   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.streaming.kafka

import scala.collection.mutable
import scala.concurrent.duration._
import scala.language.postfixOps
import scala.util.Random

import kafka.serializer.StringDecoder
import org.scalatest.BeforeAndAfterAll
import org.scalatest.concurrent.Eventually

import org.apache.spark.{SparkConf, SparkFunSuite}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Milliseconds, StreamingContext}

class KafkaStreamSuite extends SparkFunSuite with Eventually with BeforeAndAfterAll {
  private var ssc: StreamingContext = _
  private var kafkaTestUtils: KafkaTestUtils = _

  override def beforeAll(): Unit = {
    kafkaTestUtils = new KafkaTestUtils
    kafkaTestUtils.setup()
  }

  override def afterAll(): Unit = {
    if (ssc != null) {
      ssc.stop()
      ssc = null
    }

    if (kafkaTestUtils != null) {
      kafkaTestUtils.teardown()
      kafkaTestUtils = null
    }
  }

  test("Kafka input stream") {
    val sparkConf = new SparkConf().setMaster("local[4]").setAppName(this.getClass.getSimpleName)
    ssc = new StreamingContext(sparkConf, Milliseconds(500))
    val topic = "topic1"
    val sent = Map("a" -> 5, "b" -> 3, "c" -> 10)
    kafkaTestUtils.createTopic(topic)
    kafkaTestUtils.sendMessages(topic, sent)

    val kafkaParams = Map("zookeeper.connect" -> kafkaTestUtils.zkAddress,
      "group.id" -> s"test-consumer-${Random.nextInt(10000)}",
      "auto.offset.reset" -> "smallest")

    val stream = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](
      ssc, kafkaParams, Map(topic -> 1), StorageLevel.MEMORY_ONLY)
    val result = new mutable.HashMap[String, Long]() with mutable.SynchronizedMap[String, Long]
    stream.map(_._2).countByValue().foreachRDD { r =>
      val ret = r.collect()
      ret.toMap.foreach { kv =>
        val count = result.getOrElseUpdate(kv._1, 0) + kv._2
        result.put(kv._1, count)
      }
    }

    ssc.start()

    eventually(timeout(10000 milliseconds), interval(100 milliseconds)) {
      assert(sent === result)
    }
  }
} 
Example 3
Source File: MQTTStreamSuite.scala    From BigDatalog   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.streaming.mqtt

import scala.concurrent.duration._
import scala.language.postfixOps

import org.scalatest.BeforeAndAfter
import org.scalatest.concurrent.Eventually

import org.apache.spark.{SparkConf, SparkFunSuite}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Milliseconds, StreamingContext}

class MQTTStreamSuite extends SparkFunSuite with Eventually with BeforeAndAfter {

  private val batchDuration = Milliseconds(500)
  private val master = "local[2]"
  private val framework = this.getClass.getSimpleName
  private val topic = "def"

  private var ssc: StreamingContext = _
  private var mqttTestUtils: MQTTTestUtils = _

  before {
    ssc = new StreamingContext(master, framework, batchDuration)
    mqttTestUtils = new MQTTTestUtils
    mqttTestUtils.setup()
  }

  after {
    if (ssc != null) {
      ssc.stop()
      ssc = null
    }
    if (mqttTestUtils != null) {
      mqttTestUtils.teardown()
      mqttTestUtils = null
    }
  }

  test("mqtt input stream") {
    val sendMessage = "MQTT demo for spark streaming"
    val receiveStream = MQTTUtils.createStream(ssc, "tcp://" + mqttTestUtils.brokerUri, topic,
      StorageLevel.MEMORY_ONLY)

    @volatile var receiveMessage: List[String] = List()
    receiveStream.foreachRDD { rdd =>
      if (rdd.collect.length > 0) {
        receiveMessage = receiveMessage ::: List(rdd.first)
        receiveMessage
      }
    }

    ssc.start()

    // Retry it because we don't know when the receiver will start.
    eventually(timeout(10000 milliseconds), interval(100 milliseconds)) {
      mqttTestUtils.publishData(topic, sendMessage)
      assert(sendMessage.equals(receiveMessage(0)))
    }
    ssc.stop()
  }
} 
Example 4
Source File: FlumeStreamSuite.scala    From BigDatalog   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.streaming.flume

import scala.collection.JavaConverters._
import scala.collection.mutable.{ArrayBuffer, SynchronizedBuffer}
import scala.concurrent.duration._
import scala.language.postfixOps

import com.google.common.base.Charsets
import org.jboss.netty.channel.ChannelPipeline
import org.jboss.netty.channel.socket.SocketChannel
import org.jboss.netty.channel.socket.nio.NioClientSocketChannelFactory
import org.jboss.netty.handler.codec.compression._
import org.scalatest.{BeforeAndAfter, Matchers}
import org.scalatest.concurrent.Eventually._

import org.apache.spark.{Logging, SparkConf, SparkFunSuite}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Milliseconds, StreamingContext, TestOutputStream}

class FlumeStreamSuite extends SparkFunSuite with BeforeAndAfter with Matchers with Logging {
  val conf = new SparkConf().setMaster("local[4]").setAppName("FlumeStreamSuite")
  var ssc: StreamingContext = null

  test("flume input stream") {
    testFlumeStream(testCompression = false)
  }

  test("flume input compressed stream") {
    testFlumeStream(testCompression = true)
  }

  
  private class CompressionChannelFactory(compressionLevel: Int)
    extends NioClientSocketChannelFactory {

    override def newChannel(pipeline: ChannelPipeline): SocketChannel = {
      val encoder = new ZlibEncoder(compressionLevel)
      pipeline.addFirst("deflater", encoder)
      pipeline.addFirst("inflater", new ZlibDecoder())
      super.newChannel(pipeline)
    }
  }
} 
Example 5
Source File: FlumeStreamSuite.scala    From Spark-2.3.1   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.streaming.flume

import java.util.concurrent.ConcurrentLinkedQueue

import scala.collection.JavaConverters._
import scala.concurrent.duration._
import scala.language.postfixOps

import org.jboss.netty.channel.ChannelPipeline
import org.jboss.netty.channel.socket.SocketChannel
import org.jboss.netty.channel.socket.nio.NioClientSocketChannelFactory
import org.jboss.netty.handler.codec.compression._
import org.scalatest.{BeforeAndAfter, Matchers}
import org.scalatest.concurrent.Eventually._

import org.apache.spark.{SparkConf, SparkFunSuite}
import org.apache.spark.internal.Logging
import org.apache.spark.network.util.JavaUtils
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Milliseconds, StreamingContext, TestOutputStream}

class FlumeStreamSuite extends SparkFunSuite with BeforeAndAfter with Matchers with Logging {
  val conf = new SparkConf().setMaster("local[4]").setAppName("FlumeStreamSuite")
  var ssc: StreamingContext = null

  test("flume input stream") {
    testFlumeStream(testCompression = false)
  }

  test("flume input compressed stream") {
    testFlumeStream(testCompression = true)
  }

  
  private class CompressionChannelFactory(compressionLevel: Int)
    extends NioClientSocketChannelFactory {

    override def newChannel(pipeline: ChannelPipeline): SocketChannel = {
      val encoder = new ZlibEncoder(compressionLevel)
      pipeline.addFirst("deflater", encoder)
      pipeline.addFirst("inflater", new ZlibDecoder())
      super.newChannel(pipeline)
    }
  }
} 
Example 6
Source File: KafkaStreamSuite.scala    From Spark-2.3.1   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.streaming.kafka

import scala.collection.mutable
import scala.concurrent.duration._
import scala.language.postfixOps
import scala.util.Random

import kafka.serializer.StringDecoder
import org.scalatest.BeforeAndAfterAll
import org.scalatest.concurrent.Eventually

import org.apache.spark.{SparkConf, SparkFunSuite}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Milliseconds, StreamingContext}

class KafkaStreamSuite extends SparkFunSuite with Eventually with BeforeAndAfterAll {
  private var ssc: StreamingContext = _
  private var kafkaTestUtils: KafkaTestUtils = _

  override def beforeAll(): Unit = {
    kafkaTestUtils = new KafkaTestUtils
    kafkaTestUtils.setup()
  }

  override def afterAll(): Unit = {
    if (ssc != null) {
      ssc.stop()
      ssc = null
    }

    if (kafkaTestUtils != null) {
      kafkaTestUtils.teardown()
      kafkaTestUtils = null
    }
  }

  test("Kafka input stream") {
    val sparkConf = new SparkConf().setMaster("local[4]").setAppName(this.getClass.getSimpleName)
    ssc = new StreamingContext(sparkConf, Milliseconds(500))
    val topic = "topic1"
    val sent = Map("a" -> 5, "b" -> 3, "c" -> 10)
    kafkaTestUtils.createTopic(topic)
    kafkaTestUtils.sendMessages(topic, sent)

    val kafkaParams = Map("zookeeper.connect" -> kafkaTestUtils.zkAddress,
      "group.id" -> s"test-consumer-${Random.nextInt(10000)}",
      "auto.offset.reset" -> "smallest")

    val stream = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](
      ssc, kafkaParams, Map(topic -> 1), StorageLevel.MEMORY_ONLY)
    val result = new mutable.HashMap[String, Long]()
    stream.map(_._2).countByValue().foreachRDD { r =>
      r.collect().foreach { kv =>
        result.synchronized {
          val count = result.getOrElseUpdate(kv._1, 0) + kv._2
          result.put(kv._1, count)
        }
      }
    }

    ssc.start()

    eventually(timeout(10000 milliseconds), interval(100 milliseconds)) {
      assert(result.synchronized { sent === result })
    }
    ssc.stop()
  }
} 
Example 7
Source File: KafkaStreamSuite.scala    From spark1.52   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.streaming.kafka

import scala.collection.mutable
import scala.concurrent.duration._
import scala.language.postfixOps
import scala.util.Random

import kafka.serializer.StringDecoder
import org.scalatest.BeforeAndAfterAll
import org.scalatest.concurrent.Eventually

import org.apache.spark.{SparkConf, SparkFunSuite}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Milliseconds, StreamingContext}

class KafkaStreamSuite extends SparkFunSuite with Eventually with BeforeAndAfterAll {
  private var ssc: StreamingContext = _
  private var kafkaTestUtils: KafkaTestUtils = _

  override def beforeAll(): Unit = {
    kafkaTestUtils = new KafkaTestUtils
    kafkaTestUtils.setup()
  }

  override def afterAll(): Unit = {
    if (ssc != null) {
      ssc.stop()
      ssc = null
    }

    if (kafkaTestUtils != null) {
      kafkaTestUtils.teardown()
      kafkaTestUtils = null
    }
  }

  test("Kafka input stream") {//Kafka输入流
    val sparkConf = new SparkConf().setMaster("local[4]").setAppName(this.getClass.getSimpleName)
    ssc = new StreamingContext(sparkConf, Milliseconds(500))
    val topic = "topic1"
    val sent = Map("a" -> 5, "b" -> 3, "c" -> 10)
    kafkaTestUtils.createTopic(topic)
    kafkaTestUtils.sendMessages(topic, sent)

    val kafkaParams = Map("zookeeper.connect" -> kafkaTestUtils.zkAddress,
      "group.id" -> s"test-consumer-${Random.nextInt(10000)}",
      "auto.offset.reset" -> "smallest")

    val stream = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](
      ssc, kafkaParams, Map(topic -> 1), StorageLevel.MEMORY_ONLY)
    val result = new mutable.HashMap[String, Long]() with mutable.SynchronizedMap[String, Long]
    stream.map(_._2).countByValue().foreachRDD { r =>
      val ret = r.collect()
      ret.toMap.foreach { kv =>
        val count = result.getOrElseUpdate(kv._1, 0) + kv._2
        result.put(kv._1, count)
      }
    }

    ssc.start()

    eventually(timeout(10000 milliseconds), interval(100 milliseconds)) {
      assert(sent === result)
    }
  }
} 
Example 8
Source File: MQTTStreamSuite.scala    From spark1.52   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.streaming.mqtt

import scala.concurrent.duration._
import scala.language.postfixOps

import org.scalatest.BeforeAndAfter
import org.scalatest.concurrent.Eventually

import org.apache.spark.{SparkConf, SparkFunSuite}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Milliseconds, StreamingContext}

class MQTTStreamSuite extends SparkFunSuite with Eventually with BeforeAndAfter {

  private val batchDuration = Milliseconds(500)
  private val master = "local[2]"
  private val framework = this.getClass.getSimpleName
  private val topic = "def"

  private var ssc: StreamingContext = _
  private var mqttTestUtils: MQTTTestUtils = _

  before {
    ssc = new StreamingContext(master, framework, batchDuration)
    mqttTestUtils = new MQTTTestUtils
    mqttTestUtils.setup()
  }

  after {
    if (ssc != null) {
      ssc.stop()
      ssc = null
    }
    if (mqttTestUtils != null) {
      mqttTestUtils.teardown()
      mqttTestUtils = null
    }
  }

  test("mqtt input stream") {
    val sendMessage = "MQTT demo for spark streaming"
    val receiveStream = MQTTUtils.createStream(ssc, "tcp://" + mqttTestUtils.brokerUri, topic,
      StorageLevel.MEMORY_ONLY)

    @volatile var receiveMessage: List[String] = List()
    receiveStream.foreachRDD { rdd =>
      if (rdd.collect.length > 0) {
        receiveMessage = receiveMessage ::: List(rdd.first)
        receiveMessage
      }
    }

    ssc.start()

    // Retry it because we don't know when the receiver will start.
    eventually(timeout(10000 milliseconds), interval(100 milliseconds)) {
      mqttTestUtils.publishData(topic, sendMessage)
      assert(sendMessage.equals(receiveMessage(0)))
    }
    ssc.stop()
  }
} 
Example 9
Source File: FlumeStreamSuite.scala    From spark1.52   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.streaming.flume

import scala.collection.JavaConversions._
import scala.collection.mutable.{ArrayBuffer, SynchronizedBuffer}
import scala.concurrent.duration._
import scala.language.postfixOps

import com.google.common.base.Charsets
import org.jboss.netty.channel.ChannelPipeline
import org.jboss.netty.channel.socket.SocketChannel
import org.jboss.netty.channel.socket.nio.NioClientSocketChannelFactory
import org.jboss.netty.handler.codec.compression._
import org.scalatest.{BeforeAndAfter, Matchers}
import org.scalatest.concurrent.Eventually._

import org.apache.spark.{Logging, SparkConf, SparkFunSuite}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Milliseconds, StreamingContext, TestOutputStream}

  private class CompressionChannelFactory(compressionLevel: Int)
    extends NioClientSocketChannelFactory {

    override def newChannel(pipeline: ChannelPipeline): SocketChannel = {
      val encoder = new ZlibEncoder(compressionLevel)
      pipeline.addFirst("deflater", encoder)
      pipeline.addFirst("inflater", new ZlibDecoder())
      super.newChannel(pipeline)
    }
  }
} 
Example 10
Source File: KafkaStreamSuite.scala    From iolap   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.streaming.kafka

import scala.collection.mutable
import scala.concurrent.duration._
import scala.language.postfixOps
import scala.util.Random

import kafka.serializer.StringDecoder
import org.scalatest.BeforeAndAfterAll
import org.scalatest.concurrent.Eventually

import org.apache.spark.{SparkConf, SparkFunSuite}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Milliseconds, StreamingContext}

class KafkaStreamSuite extends SparkFunSuite with Eventually with BeforeAndAfterAll {
  private var ssc: StreamingContext = _
  private var kafkaTestUtils: KafkaTestUtils = _

  override def beforeAll(): Unit = {
    kafkaTestUtils = new KafkaTestUtils
    kafkaTestUtils.setup()
  }

  override def afterAll(): Unit = {
    if (ssc != null) {
      ssc.stop()
      ssc = null
    }

    if (kafkaTestUtils != null) {
      kafkaTestUtils.teardown()
      kafkaTestUtils = null
    }
  }

  test("Kafka input stream") {
    val sparkConf = new SparkConf().setMaster("local[4]").setAppName(this.getClass.getSimpleName)
    ssc = new StreamingContext(sparkConf, Milliseconds(500))
    val topic = "topic1"
    val sent = Map("a" -> 5, "b" -> 3, "c" -> 10)
    kafkaTestUtils.createTopic(topic)
    kafkaTestUtils.sendMessages(topic, sent)

    val kafkaParams = Map("zookeeper.connect" -> kafkaTestUtils.zkAddress,
      "group.id" -> s"test-consumer-${Random.nextInt(10000)}",
      "auto.offset.reset" -> "smallest")

    val stream = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](
      ssc, kafkaParams, Map(topic -> 1), StorageLevel.MEMORY_ONLY)
    val result = new mutable.HashMap[String, Long]() with mutable.SynchronizedMap[String, Long]
    stream.map(_._2).countByValue().foreachRDD { r =>
      val ret = r.collect()
      ret.toMap.foreach { kv =>
        val count = result.getOrElseUpdate(kv._1, 0) + kv._2
        result.put(kv._1, count)
      }
    }

    ssc.start()

    eventually(timeout(10000 milliseconds), interval(100 milliseconds)) {
      assert(sent === result)
    }
  }
} 
Example 11
Source File: FlumeStreamSuite.scala    From iolap   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.streaming.flume

import java.net.{InetSocketAddress, ServerSocket}
import java.nio.ByteBuffer

import scala.collection.JavaConversions._
import scala.collection.mutable.{ArrayBuffer, SynchronizedBuffer}
import scala.concurrent.duration._
import scala.language.postfixOps

import com.google.common.base.Charsets
import org.apache.avro.ipc.NettyTransceiver
import org.apache.avro.ipc.specific.SpecificRequestor
import org.apache.commons.lang3.RandomUtils
import org.apache.flume.source.avro
import org.apache.flume.source.avro.{AvroFlumeEvent, AvroSourceProtocol}
import org.jboss.netty.channel.ChannelPipeline
import org.jboss.netty.channel.socket.SocketChannel
import org.jboss.netty.channel.socket.nio.NioClientSocketChannelFactory
import org.jboss.netty.handler.codec.compression._
import org.scalatest.{BeforeAndAfter, Matchers}
import org.scalatest.concurrent.Eventually._

import org.apache.spark.{Logging, SparkConf, SparkFunSuite}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Milliseconds, StreamingContext, TestOutputStream}
import org.apache.spark.util.Utils

class FlumeStreamSuite extends SparkFunSuite with BeforeAndAfter with Matchers with Logging {
  val conf = new SparkConf().setMaster("local[4]").setAppName("FlumeStreamSuite")

  var ssc: StreamingContext = null
  var transceiver: NettyTransceiver = null

  after {
    if (ssc != null) {
      ssc.stop()
    }
    if (transceiver != null) {
      transceiver.close()
    }
  }

  test("flume input stream") {
    testFlumeStream(testCompression = false)
  }

  test("flume input compressed stream") {
    testFlumeStream(testCompression = true)
  }

  
  private class CompressionChannelFactory(compressionLevel: Int)
    extends NioClientSocketChannelFactory {

    override def newChannel(pipeline: ChannelPipeline): SocketChannel = {
      val encoder = new ZlibEncoder(compressionLevel)
      pipeline.addFirst("deflater", encoder)
      pipeline.addFirst("inflater", new ZlibDecoder())
      super.newChannel(pipeline)
    }
  }
} 
Example 12
Source File: FlumeStreamSuite.scala    From multi-tenancy-spark   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.streaming.flume

import java.util.concurrent.ConcurrentLinkedQueue

import scala.collection.JavaConverters._
import scala.concurrent.duration._
import scala.language.postfixOps

import org.jboss.netty.channel.ChannelPipeline
import org.jboss.netty.channel.socket.SocketChannel
import org.jboss.netty.channel.socket.nio.NioClientSocketChannelFactory
import org.jboss.netty.handler.codec.compression._
import org.scalatest.{BeforeAndAfter, Matchers}
import org.scalatest.concurrent.Eventually._

import org.apache.spark.{SparkConf, SparkFunSuite}
import org.apache.spark.internal.Logging
import org.apache.spark.network.util.JavaUtils
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Milliseconds, StreamingContext, TestOutputStream}

class FlumeStreamSuite extends SparkFunSuite with BeforeAndAfter with Matchers with Logging {
  val conf = new SparkConf().setMaster("local[4]").setAppName("FlumeStreamSuite")
  var ssc: StreamingContext = null

  test("flume input stream") {
    testFlumeStream(testCompression = false)
  }

  test("flume input compressed stream") {
    testFlumeStream(testCompression = true)
  }

  
  private class CompressionChannelFactory(compressionLevel: Int)
    extends NioClientSocketChannelFactory {

    override def newChannel(pipeline: ChannelPipeline): SocketChannel = {
      val encoder = new ZlibEncoder(compressionLevel)
      pipeline.addFirst("deflater", encoder)
      pipeline.addFirst("inflater", new ZlibDecoder())
      super.newChannel(pipeline)
    }
  }
} 
Example 13
Source File: KafkaStreamSuite.scala    From multi-tenancy-spark   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.streaming.kafka

import scala.collection.mutable
import scala.concurrent.duration._
import scala.language.postfixOps
import scala.util.Random

import kafka.serializer.StringDecoder
import org.scalatest.BeforeAndAfterAll
import org.scalatest.concurrent.Eventually

import org.apache.spark.{SparkConf, SparkFunSuite}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Milliseconds, StreamingContext}

class KafkaStreamSuite extends SparkFunSuite with Eventually with BeforeAndAfterAll {
  private var ssc: StreamingContext = _
  private var kafkaTestUtils: KafkaTestUtils = _

  override def beforeAll(): Unit = {
    kafkaTestUtils = new KafkaTestUtils
    kafkaTestUtils.setup()
  }

  override def afterAll(): Unit = {
    if (ssc != null) {
      ssc.stop()
      ssc = null
    }

    if (kafkaTestUtils != null) {
      kafkaTestUtils.teardown()
      kafkaTestUtils = null
    }
  }

  test("Kafka input stream") {
    val sparkConf = new SparkConf().setMaster("local[4]").setAppName(this.getClass.getSimpleName)
    ssc = new StreamingContext(sparkConf, Milliseconds(500))
    val topic = "topic1"
    val sent = Map("a" -> 5, "b" -> 3, "c" -> 10)
    kafkaTestUtils.createTopic(topic)
    kafkaTestUtils.sendMessages(topic, sent)

    val kafkaParams = Map("zookeeper.connect" -> kafkaTestUtils.zkAddress,
      "group.id" -> s"test-consumer-${Random.nextInt(10000)}",
      "auto.offset.reset" -> "smallest")

    val stream = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](
      ssc, kafkaParams, Map(topic -> 1), StorageLevel.MEMORY_ONLY)
    val result = new mutable.HashMap[String, Long]()
    stream.map(_._2).countByValue().foreachRDD { r =>
      r.collect().foreach { kv =>
        result.synchronized {
          val count = result.getOrElseUpdate(kv._1, 0) + kv._2
          result.put(kv._1, count)
        }
      }
    }

    ssc.start()

    eventually(timeout(10000 milliseconds), interval(100 milliseconds)) {
      assert(result.synchronized { sent === result })
    }
  }
} 
Example 14
Source File: KafkaStreamSuite.scala    From drizzle-spark   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.streaming.kafka

import scala.collection.mutable
import scala.concurrent.duration._
import scala.language.postfixOps
import scala.util.Random

import kafka.serializer.StringDecoder
import org.scalatest.BeforeAndAfterAll
import org.scalatest.concurrent.Eventually

import org.apache.spark.{SparkConf, SparkFunSuite}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Milliseconds, StreamingContext}

class KafkaStreamSuite extends SparkFunSuite with Eventually with BeforeAndAfterAll {
  private var ssc: StreamingContext = _
  private var kafkaTestUtils: KafkaTestUtils = _

  override def beforeAll(): Unit = {
    kafkaTestUtils = new KafkaTestUtils
    kafkaTestUtils.setup()
  }

  override def afterAll(): Unit = {
    if (ssc != null) {
      ssc.stop()
      ssc = null
    }

    if (kafkaTestUtils != null) {
      kafkaTestUtils.teardown()
      kafkaTestUtils = null
    }
  }

  test("Kafka input stream") {
    val sparkConf = new SparkConf().setMaster("local[4]").setAppName(this.getClass.getSimpleName)
    ssc = new StreamingContext(sparkConf, Milliseconds(500))
    val topic = "topic1"
    val sent = Map("a" -> 5, "b" -> 3, "c" -> 10)
    kafkaTestUtils.createTopic(topic)
    kafkaTestUtils.sendMessages(topic, sent)

    val kafkaParams = Map("zookeeper.connect" -> kafkaTestUtils.zkAddress,
      "group.id" -> s"test-consumer-${Random.nextInt(10000)}",
      "auto.offset.reset" -> "smallest")

    val stream = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](
      ssc, kafkaParams, Map(topic -> 1), StorageLevel.MEMORY_ONLY)
    val result = new mutable.HashMap[String, Long]()
    stream.map(_._2).countByValue().foreachRDD { r =>
      r.collect().foreach { kv =>
        result.synchronized {
          val count = result.getOrElseUpdate(kv._1, 0) + kv._2
          result.put(kv._1, count)
        }
      }
    }

    ssc.start()

    eventually(timeout(10000 milliseconds), interval(100 milliseconds)) {
      assert(result.synchronized { sent === result })
    }
  }
} 
Example 15
Source File: AkkaStreamSuite.scala    From bahir   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.streaming.akka

import java.util.concurrent.ConcurrentLinkedQueue

import scala.collection.JavaConverters._
import scala.concurrent.Await
import scala.concurrent.duration._

import akka.actor._
import com.typesafe.config.ConfigFactory
import org.scalatest.BeforeAndAfter
import org.scalatest.concurrent.Eventually

import org.apache.spark.{SparkConf, SparkFunSuite}
import org.apache.spark.streaming.{Milliseconds, StreamingContext}

class AkkaStreamSuite extends SparkFunSuite with Eventually with BeforeAndAfter {

  private var ssc: StreamingContext = _

  private var actorSystem: ActorSystem = _

  after {
    if (ssc != null) {
      ssc.stop()
      ssc = null
    }
    if (actorSystem != null) {
      Await.ready(actorSystem.terminate(), 30.seconds)
      actorSystem = null
    }
  }

  test("actor input stream") {
    val sparkConf = new SparkConf().setMaster("local[4]").setAppName(this.getClass.getSimpleName)
    ssc = new StreamingContext(sparkConf, Milliseconds(500))

    // we set the TCP port to "0" to have the port chosen automatically for the Feeder actor and
    // the Receiver actor will "pick it up" from the Feeder URI when it subscribes to the Feeder
    // actor (http://doc.akka.io/docs/akka/2.3.11/scala/remoting.html)
    val akkaConf = ConfigFactory.parseMap(
      Map(
        "akka.actor.provider" -> "akka.remote.RemoteActorRefProvider",
        "akka.remote.netty.tcp.transport-class" -> "akka.remote.transport.netty.NettyTransport",
        "akka.remote.netty.tcp.port" -> "0").
        asJava)
    actorSystem = ActorSystem("test", akkaConf)
    actorSystem.actorOf(Props(classOf[FeederActor]), "FeederActor")
    val feederUri =
      actorSystem.asInstanceOf[ExtendedActorSystem].provider.getDefaultAddress + "/user/FeederActor"

    val actorStream =
      AkkaUtils.createStream[String](ssc, Props(classOf[TestActorReceiver], feederUri),
        "TestActorReceiver")
    val result = new ConcurrentLinkedQueue[String]
    actorStream.foreachRDD { rdd =>
      rdd.collect().foreach(result.add)
    }
    ssc.start()

    eventually(timeout(10.seconds), interval(10.milliseconds)) {
      assert((1 to 10).map(_.toString) === result.asScala.toList)
    }
  }
}

case class SubscribeReceiver(receiverActor: ActorRef)

class FeederActor extends Actor {

  def receive: Receive = {
    case SubscribeReceiver(receiverActor: ActorRef) =>
      (1 to 10).foreach(i => receiverActor ! i.toString())
  }
}

class TestActorReceiver(uriOfPublisher: String) extends ActorReceiver {

  lazy private val remotePublisher = context.actorSelection(uriOfPublisher)

  override def preStart(): Unit = {
    remotePublisher ! SubscribeReceiver(self)
  }

  def receive: PartialFunction[Any, Unit] = {
    case msg: String => store(msg)
  }

} 
Example 16
Source File: FlumeStreamSuite.scala    From sparkoscope   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.streaming.flume

import java.util.concurrent.ConcurrentLinkedQueue

import scala.collection.JavaConverters._
import scala.concurrent.duration._
import scala.language.postfixOps

import org.jboss.netty.channel.ChannelPipeline
import org.jboss.netty.channel.socket.SocketChannel
import org.jboss.netty.channel.socket.nio.NioClientSocketChannelFactory
import org.jboss.netty.handler.codec.compression._
import org.scalatest.{BeforeAndAfter, Matchers}
import org.scalatest.concurrent.Eventually._

import org.apache.spark.{SparkConf, SparkFunSuite}
import org.apache.spark.internal.Logging
import org.apache.spark.network.util.JavaUtils
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Milliseconds, StreamingContext, TestOutputStream}

class FlumeStreamSuite extends SparkFunSuite with BeforeAndAfter with Matchers with Logging {
  val conf = new SparkConf().setMaster("local[4]").setAppName("FlumeStreamSuite")
  var ssc: StreamingContext = null

  test("flume input stream") {
    testFlumeStream(testCompression = false)
  }

  test("flume input compressed stream") {
    testFlumeStream(testCompression = true)
  }

  
  private class CompressionChannelFactory(compressionLevel: Int)
    extends NioClientSocketChannelFactory {

    override def newChannel(pipeline: ChannelPipeline): SocketChannel = {
      val encoder = new ZlibEncoder(compressionLevel)
      pipeline.addFirst("deflater", encoder)
      pipeline.addFirst("inflater", new ZlibDecoder())
      super.newChannel(pipeline)
    }
  }
} 
Example 17
Source File: KafkaStreamSuite.scala    From sparkoscope   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.streaming.kafka

import scala.collection.mutable
import scala.concurrent.duration._
import scala.language.postfixOps
import scala.util.Random

import kafka.serializer.StringDecoder
import org.scalatest.BeforeAndAfterAll
import org.scalatest.concurrent.Eventually

import org.apache.spark.{SparkConf, SparkFunSuite}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Milliseconds, StreamingContext}

class KafkaStreamSuite extends SparkFunSuite with Eventually with BeforeAndAfterAll {
  private var ssc: StreamingContext = _
  private var kafkaTestUtils: KafkaTestUtils = _

  override def beforeAll(): Unit = {
    kafkaTestUtils = new KafkaTestUtils
    kafkaTestUtils.setup()
  }

  override def afterAll(): Unit = {
    if (ssc != null) {
      ssc.stop()
      ssc = null
    }

    if (kafkaTestUtils != null) {
      kafkaTestUtils.teardown()
      kafkaTestUtils = null
    }
  }

  test("Kafka input stream") {
    val sparkConf = new SparkConf().setMaster("local[4]").setAppName(this.getClass.getSimpleName)
    ssc = new StreamingContext(sparkConf, Milliseconds(500))
    val topic = "topic1"
    val sent = Map("a" -> 5, "b" -> 3, "c" -> 10)
    kafkaTestUtils.createTopic(topic)
    kafkaTestUtils.sendMessages(topic, sent)

    val kafkaParams = Map("zookeeper.connect" -> kafkaTestUtils.zkAddress,
      "group.id" -> s"test-consumer-${Random.nextInt(10000)}",
      "auto.offset.reset" -> "smallest")

    val stream = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](
      ssc, kafkaParams, Map(topic -> 1), StorageLevel.MEMORY_ONLY)
    val result = new mutable.HashMap[String, Long]()
    stream.map(_._2).countByValue().foreachRDD { r =>
      r.collect().foreach { kv =>
        result.synchronized {
          val count = result.getOrElseUpdate(kv._1, 0) + kv._2
          result.put(kv._1, count)
        }
      }
    }

    ssc.start()

    eventually(timeout(10000 milliseconds), interval(100 milliseconds)) {
      assert(result.synchronized { sent === result })
    }
  }
} 
Example 18
Source File: TriggerStage.scala    From sparta   with Apache License 2.0 5 votes vote down vote up
package com.stratio.sparta.driver.stage

import com.stratio.sparta.driver.step.Trigger
import com.stratio.sparta.driver.writer.{TriggerWriterHelper, WriterOptions}
import com.stratio.sparta.sdk.pipeline.output.Output
import com.stratio.sparta.sdk.utils.AggregationTime
import com.stratio.sparta.serving.core.models.policy.PhaseEnum
import com.stratio.sparta.serving.core.models.policy.trigger.TriggerModel
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.StructType
import org.apache.spark.streaming.Milliseconds
import org.apache.spark.streaming.dstream.DStream

trait TriggerStage extends BaseStage {
  this: ErrorPersistor =>

  def triggersStreamStage(initSchema: StructType,
                          inputData: DStream[Row],
                          outputs: Seq[Output],
                          window: Long): Unit = {
    val triggersStage = triggerStage(policy.streamTriggers)
    val errorMessage = s"Something gone wrong executing the triggers stream for: ${policy.input.get.name}."
    val okMessage = s"Triggers Stream executed correctly."
    generalTransformation(PhaseEnum.TriggerStream, okMessage, errorMessage) {
      triggersStage
        .groupBy(trigger => (trigger.overLast, trigger.computeEvery))
        .foreach { case ((overLast, computeEvery), triggers) =>
          val groupedData = (overLast, computeEvery) match {
            case (None, None) => inputData
            case (Some(overL), Some(computeE))
              if (AggregationTime.parseValueToMilliSeconds(overL) == window) &&
                (AggregationTime.parseValueToMilliSeconds(computeE) == window) => inputData
            case _ => inputData.window(
              Milliseconds(
                overLast.fold(window) { over => AggregationTime.parseValueToMilliSeconds(over) }),
              Milliseconds(
                computeEvery.fold(window) { computeEvery => AggregationTime.parseValueToMilliSeconds(computeEvery) }))
          }
          TriggerWriterHelper.writeStream(triggers, streamTemporalTable(policy.streamTemporalTable), outputs,
            groupedData, initSchema)
        }
    }
  }

  def triggerStage(triggers: Seq[TriggerModel]): Seq[Trigger] =
    triggers.map(trigger => createTrigger(trigger))

  private[driver] def createTrigger(trigger: TriggerModel): Trigger = {
    val okMessage = s"Trigger: ${trigger.name} created correctly."
    val errorMessage = s"Something gone wrong creating the trigger: ${trigger.name}. Please re-check the policy."
    generalTransformation(PhaseEnum.Trigger, okMessage, errorMessage) {
      Trigger(
        trigger.name,
        trigger.sql,
        trigger.overLast,
        trigger.computeEvery,
        WriterOptions(
          trigger.writer.outputs,
          trigger.writer.saveMode,
          trigger.writer.tableName,
          getAutoCalculatedFields(trigger.writer.autoCalculatedFields),
          trigger.writer.primaryKey,
          trigger.writer.partitionBy
        ),
        trigger.configuration)
    }
  }

  private[driver] def streamTemporalTable(policyTableName: Option[String]): String =
    policyTableName.flatMap(tableName => if (tableName.nonEmpty) Some(tableName) else None)
      .getOrElse("stream")

} 
Example 19
Source File: L3-DStreamAggregation.scala    From prosparkstreaming   with Apache License 2.0 5 votes vote down vote up
package org.apress.prospark

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{ Milliseconds, Seconds, StreamingContext }
import org.apache.hadoop.io.{ Text, LongWritable, IntWritable }
import org.apache.hadoop.fs.Path
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat
import org.apache.spark.streaming.dstream.DStream
import org.apache.hadoop.mapred.TextOutputFormat
import org.apache.hadoop.mapreduce.lib.output.{ TextOutputFormat => NewTextOutputFormat }
import org.apache.spark.streaming.dstream.PairDStreamFunctions
import org.apache.log4j.LogManager
import org.json4s._
import org.json4s.native.JsonMethods._
import java.text.SimpleDateFormat
import java.util.Date

object RedditAggregationApp {
  def main(args: Array[String]) {
    if (args.length != 2) {
      System.err.println(
        "Usage: RedditAggregationApp <appname> <input_path>")
      System.exit(1)
    }
    val Seq(appName, inputPath) = args.toSeq
    val LOG = LogManager.getLogger(this.getClass)

    val conf = new SparkConf()
      .setAppName(appName)
      .setJars(SparkContext.jarOfClass(this.getClass).toSeq)

    val ssc = new StreamingContext(conf, Seconds(1))
    LOG.info("Started at %d".format(ssc.sparkContext.startTime))

    val comments = ssc.fileStream[LongWritable, Text, TextInputFormat](inputPath, (f: Path) => true, newFilesOnly = false).map(pair => pair._2.toString)

    val recCount = comments.count()

    val recCountValue = comments.countByValue()

    val totalWords = comments.map(rec => ((parse(rec) \ "body").values.toString))
      .flatMap(body => body.split(" "))
      .map(word => 1)
      .reduce(_ + _)

    ssc.start()
    ssc.awaitTermination()

  }
} 
Example 20
Source File: L3-DStreamWindowAndAction.scala    From prosparkstreaming   with Apache License 2.0 5 votes vote down vote up
package org.apress.prospark

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{ Milliseconds, Seconds, StreamingContext }
import org.apache.hadoop.io.{ Text, LongWritable, IntWritable }
import org.apache.hadoop.fs.Path
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat
import org.apache.spark.streaming.dstream.DStream
import org.apache.hadoop.mapred.TextOutputFormat
import org.apache.hadoop.mapreduce.lib.output.{ TextOutputFormat => NewTextOutputFormat }
import org.apache.spark.streaming.dstream.PairDStreamFunctions
import org.apache.log4j.LogManager
import org.json4s._
import org.json4s.native.JsonMethods._
import java.text.SimpleDateFormat
import java.util.Date
import org.apache.spark.HashPartitioner

object RedditWindowAndActionApp {
  def main(args: Array[String]) {
    if (args.length != 2) {
      System.err.println(
        "Usage: RedditWindowAndActionApp <appname> <input_path>")
      System.exit(1)
    }
    val Seq(appName, inputPath) = args.toSeq
    val LOG = LogManager.getLogger(this.getClass)

    val conf = new SparkConf()
      .setAppName(appName)
      .setJars(SparkContext.jarOfClass(this.getClass).toSeq)

    val ssc = new StreamingContext(conf, Seconds(1))
    LOG.info("Started at %d".format(ssc.sparkContext.startTime))

    val comments = ssc.fileStream[LongWritable, Text, TextInputFormat](inputPath, (f: Path) => true, newFilesOnly = false).map(pair => pair._2.toString)

    val checkpointPath = "/tmp"
    ssc.checkpoint(checkpointPath)
    val updateFunc = (values: Seq[Int], state: Option[Int]) => {
      val currentCount = values.sum
      val previousCount = state.getOrElse(0)
      Some(currentCount + previousCount)
    }
    val keyedBySubredditState = comments.map(rec => (((parse(rec)) \ "subreddit").values.toString, 1))
    val globalCount = keyedBySubredditState.updateStateByKey(updateFunc)
      .map(r => (r._2, r._1))
      .transform(rdd => rdd.sortByKey(ascending = false))

    val distinctSubreddits = comments.map(rec => ((parse(rec)) \ "subreddit").values.toString)
    val windowedRecs = distinctSubreddits.window(Seconds(5), Seconds(5))
    val windowedCounts = windowedRecs.countByValue()

    windowedCounts.print(10)
    windowedCounts.saveAsObjectFiles("subreddit", "obj")
    windowedCounts.saveAsTextFiles("subreddit", "txt")

    globalCount.saveAsHadoopFiles("subreddit", "hadoop",
      classOf[IntWritable], classOf[Text], classOf[TextOutputFormat[IntWritable, Text]])
    globalCount.saveAsNewAPIHadoopFiles("subreddit", "newhadoop",
      classOf[IntWritable], classOf[Text], classOf[NewTextOutputFormat[IntWritable, Text]])
    comments.foreachRDD(rdd => {
      LOG.info("RDD: %s, Count: %d".format(rdd.id, rdd.count()))
    })

    ssc.start()
    ssc.awaitTermination()

  }
} 
Example 21
Source File: L3-DStreamVariation.scala    From prosparkstreaming   with Apache License 2.0 5 votes vote down vote up
package org.apress.prospark

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{ Milliseconds, Seconds, StreamingContext }
import org.apache.hadoop.io.{ Text, LongWritable, IntWritable }
import org.apache.hadoop.fs.Path
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat
import org.apache.spark.streaming.dstream.DStream
import org.apache.hadoop.mapred.TextOutputFormat
import org.apache.hadoop.mapreduce.lib.output.{ TextOutputFormat => NewTextOutputFormat }
import org.apache.spark.streaming.dstream.PairDStreamFunctions
import org.apache.log4j.LogManager
import org.json4s._
import org.json4s.native.JsonMethods._
import java.text.SimpleDateFormat
import java.util.Date

object RedditVariationApp {
  def main(args: Array[String]) {
    if (args.length != 2) {
      System.err.println(
        "Usage: RedditVariationApp <appname> <input_path>")
      System.exit(1)
    }
    val Seq(appName, inputPath) = args.toSeq
    val LOG = LogManager.getLogger(this.getClass)

    val conf = new SparkConf()
      .setAppName(appName)
      .setJars(SparkContext.jarOfClass(this.getClass).toSeq)

    val ssc = new StreamingContext(conf, Seconds(1))
    LOG.info("Started at %d".format(ssc.sparkContext.startTime))

    val comments = ssc.fileStream[LongWritable, Text, TextInputFormat](inputPath, (f: Path) => true, newFilesOnly = false).map(pair => pair._2.toString)

    val merged = comments.union(comments)

    val repartitionedComments = comments.repartition(4)

    val rddMin = comments.glom().map(arr =>
      arr.minBy(rec => ((parse(rec) \ "created_utc").values.toString.toInt)))

    ssc.start()
    ssc.awaitTermination()

  }
} 
Example 22
Source File: L3-DStreamKeyValue.scala    From prosparkstreaming   with Apache License 2.0 5 votes vote down vote up
package org.apress.prospark

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{ Milliseconds, Seconds, StreamingContext }
import org.apache.hadoop.io.{ Text, LongWritable, IntWritable }
import org.apache.hadoop.fs.Path
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat
import org.apache.spark.streaming.dstream.DStream
import org.apache.hadoop.mapred.TextOutputFormat
import org.apache.hadoop.mapreduce.lib.output.{ TextOutputFormat => NewTextOutputFormat }
import org.apache.spark.streaming.dstream.PairDStreamFunctions
import org.apache.log4j.LogManager
import org.json4s._
import org.json4s.native.JsonMethods._
import java.text.SimpleDateFormat
import java.util.Date
import org.apache.spark.HashPartitioner

object RedditKeyValueApp {
  def main(args: Array[String]) {
    if (args.length != 3) {
      System.err.println(
        "Usage: RedditKeyValueApp <appname> <input_path> <input_path_popular>")
      System.exit(1)
    }
    val Seq(appName, inputPath, inputPathPopular) = args.toSeq
    val LOG = LogManager.getLogger(this.getClass)

    val conf = new SparkConf()
      .setAppName(appName)
      .setJars(SparkContext.jarOfClass(this.getClass).toSeq)

    val ssc = new StreamingContext(conf, Seconds(1))
    LOG.info("Started at %d".format(ssc.sparkContext.startTime))

    val comments = ssc.fileStream[LongWritable, Text, TextInputFormat](inputPath, (f: Path) => true, newFilesOnly = false).map(pair => pair._2.toString)

    val popular = ssc.fileStream[LongWritable, Text, TextInputFormat](inputPathPopular, (f: Path) => true, newFilesOnly = false).map(pair => pair._2.toString)

    val topAuthors = comments.map(rec => ((parse(rec) \ "author").values.toString, 1))
      .groupByKey()
      .map(r => (r._2.sum, r._1))
      .transform(rdd => rdd.sortByKey(ascending = false))

    val topAuthors2 = comments.map(rec => ((parse(rec) \ "author").values.toString, 1))
      .reduceByKey(_ + _)
      .map(r => (r._2, r._1))
      .transform(rdd => rdd.sortByKey(ascending = false))

    val topAuthorsByAvgContent = comments.map(rec => ((parse(rec) \ "author").values.toString, (parse(rec) \ "body").values.toString.split(" ").length))
      .combineByKey(
        (v) => (v, 1),
        (accValue: (Int, Int), v) => (accValue._1 + v, accValue._2 + 1),
        (accCombine1: (Int, Int), accCombine2: (Int, Int)) => (accCombine1._1 + accCombine2._1, accCombine1._2 + accCombine2._2),
        new HashPartitioner(ssc.sparkContext.defaultParallelism))
      .map({ case (k, v) => (k, v._1 / v._2.toFloat) })
      .map(r => (r._2, r._1))
      .transform(rdd => rdd.sortByKey(ascending = false))

    val keyedBySubreddit = comments.map(rec => (((parse(rec)) \ "subreddit").values.toString, rec))
    val keyedBySubreddit2 = popular.map(rec => ({
      val t = rec.split(",")
      (t(1).split("/")(4), t(0))
    }))
    val commentsWithIndustry = keyedBySubreddit.join(keyedBySubreddit2)

    val keyedBySubredditCo = comments.map(rec => (((parse(rec)) \ "subreddit").values.toString, rec))
    val keyedBySubredditCo2 = popular.map(rec => ({
      val t = rec.split(",")
      (t(1).split("/")(4), t(0))
    }))
    val commentsWithIndustryCo = keyedBySubreddit.cogroup(keyedBySubreddit2)

    val checkpointPath = "/tmp"
    ssc.checkpoint(checkpointPath)
    val updateFunc = (values: Seq[Int], state: Option[Int]) => {
      val currentCount = values.sum
      val previousCount = state.getOrElse(0)
      Some(currentCount + previousCount)
    }
    val keyedBySubredditState = comments.map(rec => (((parse(rec)) \ "subreddit").values.toString, 1))
    val globalCount = keyedBySubredditState.updateStateByKey(updateFunc)
      .map(r => (r._2, r._1))
      .transform(rdd => rdd.sortByKey(ascending = false))

    ssc.start()
    ssc.awaitTermination()

  }
} 
Example 23
Source File: L3-DStreamMapping.scala    From prosparkstreaming   with Apache License 2.0 5 votes vote down vote up
package org.apress.prospark

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{ Milliseconds, Seconds, StreamingContext }
import org.apache.hadoop.io.{ Text, LongWritable, IntWritable }
import org.apache.hadoop.fs.Path
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat
import org.apache.spark.streaming.dstream.DStream
import org.apache.hadoop.mapred.TextOutputFormat
import org.apache.hadoop.mapreduce.lib.output.{ TextOutputFormat => NewTextOutputFormat }
import org.apache.spark.streaming.dstream.PairDStreamFunctions
import org.apache.log4j.LogManager
import org.json4s._
import org.json4s.native.JsonMethods._
import java.text.SimpleDateFormat
import java.util.Date

object RedditMappingApp {
  def main(args: Array[String]) {
    if (args.length != 2) {
      System.err.println(
        "Usage: RedditMappingApp <appname> <input_path>")
      System.exit(1)
    }
    val Seq(appName, inputPath) = args.toSeq
    val LOG = LogManager.getLogger(this.getClass)

    val conf = new SparkConf()
      .setAppName(appName)
      .setJars(SparkContext.jarOfClass(this.getClass).toSeq)

    val ssc = new StreamingContext(conf, Seconds(1))
    LOG.info("Started at %d".format(ssc.sparkContext.startTime))

    val comments = ssc.fileStream[LongWritable, Text, TextInputFormat](inputPath, (f: Path) => true, newFilesOnly = false).map(pair => pair._2.toString)

    val sdf = new SimpleDateFormat("yyyy-MM-dd")
    val tsKey = "created_utc"
    val secs = 1000L
    val keyedByDay = comments.map(rec => {
      val ts = (parse(rec) \ tsKey).values
      (sdf.format(new Date(ts.toString.toLong * secs)), rec)
    })

    val keyedByDayPart = comments.mapPartitions(iter => {
      var ret = List[(String, String)]()
      while (iter.hasNext) {
        val rec = iter.next
        val ts = (parse(rec) \ tsKey).values
        ret.::=(sdf.format(new Date(ts.toString.toLong * secs)), rec)
      }
      ret.iterator
    })

    val wordTokens = comments.map(rec => {
      ((parse(rec) \ "body")).values.toString.split(" ")
    })

    val wordTokensFlat = comments.flatMap(rec => {
      ((parse(rec) \ "body")).values.toString.split(" ")
    })

    val filterSubreddit = comments.filter(rec =>
      (parse(rec) \ "subreddit").values.toString.equals("AskReddit"))

    val sortedByAuthor = comments.transform(rdd =>
      (rdd.sortBy(rec => (parse(rec) \ "author").values.toString)))

    ssc.start()
    ssc.awaitTermination()

  }
} 
Example 24
Source File: Streaming.scala    From scala-spark-cab-rides-predictions   with MIT License 5 votes vote down vote up
import com.amazonaws.services.dynamodbv2.document.internal.InternalUtils
import com.amazonaws.services.dynamodbv2.streamsadapter.model.RecordAdapter
import com.amazonaws.services.kinesis.model.Record
import com.google.gson.Gson
import org.apache.spark.sql._
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.kinesis.dynamostream.KinesisInitialPositions.Latest
import org.apache.spark.streaming.kinesis.dynamostream.KinesisInputDStream
import org.apache.spark.streaming.{Milliseconds, Seconds, StreamingContext}

object Trials extends App {

  import org.apache.log4j.{Level, Logger}

  Logger.getLogger("org").setLevel(Level.ERROR)
  Logger.getLogger("akka").setLevel(Level.ERROR)

  //session setup
  System.setProperty("hadoop.home.dir", "C:\\winutils")
  val sparkSession = SparkSession.builder()
    .master("local[*]")
    .appName("test")
    .getOrCreate()
  val sc = sparkSession.sparkContext
  val ssc = new StreamingContext(sc, Seconds(10))
  val sqlContext = sparkSession.sqlContext

  //creates an array of strings from raw byte array
  def kinesisRecordHandler: Record => Array[String] = (record: Record) => new String(record.getData.array()).split(",")

  //converts records to map of key value pair and then json
  def recordHandler = (record: Record) => {
    val gson = new Gson
    val sRecord = record.asInstanceOf[RecordAdapter].getInternalObject
    val map = InternalUtils.toSimpleMapValue(sRecord.getDynamodb.getNewImage)
    gson.toJson(map)
  }

  case class CabPrice(cab_type: String, product_id: String, name: String, price: String, distance: String, surge_multiplier: String, time_stamp: String, source: String, destination: String, id: String)

  val stream_cab = KinesisInputDStream.builder
    .streamingContext(ssc)
    .streamName("cab_rides")
    .regionName("us-east-1")
    .initialPosition(new Latest())
    .checkpointAppName("cab_rides-app")
    .checkpointInterval(Milliseconds(1000))
    .storageLevel(StorageLevel.MEMORY_AND_DISK_2)
    .buildWithMessageHandler(recordHandler)


  val stream_weather = KinesisInputDStream.builder
    .streamingContext(ssc)
    .streamName("weather")
    .regionName("us-east-1")
    .initialPosition(new Latest())
    .checkpointAppName("cab_rides-app")
    .checkpointInterval(Milliseconds(1000))
    .storageLevel(StorageLevel.MEMORY_AND_DISK_2)
    .buildWithMessageHandler(recordHandler)


  //creating dataframe, can be stored as temp view
  val cabSchema = Encoders.product[CabPrice].schema
  stream_cab.foreachRDD(rdd => {
    import sqlContext.implicits._
    //val xx: Dataset[String] = rdd.toDS()

    val df: DataFrame = sqlContext.read.schema(cabSchema).json(rdd.toDS())
    df.show()

  })
  ssc.start()
  ssc.awaitTermination()

} 
Example 25
Source File: FlumeStreamSuite.scala    From drizzle-spark   with Apache License 2.0 5 votes vote down vote up
package org.apache.spark.streaming.flume

import java.util.concurrent.ConcurrentLinkedQueue

import scala.collection.JavaConverters._
import scala.concurrent.duration._
import scala.language.postfixOps

import org.jboss.netty.channel.ChannelPipeline
import org.jboss.netty.channel.socket.SocketChannel
import org.jboss.netty.channel.socket.nio.NioClientSocketChannelFactory
import org.jboss.netty.handler.codec.compression._
import org.scalatest.{BeforeAndAfter, Matchers}
import org.scalatest.concurrent.Eventually._

import org.apache.spark.{SparkConf, SparkFunSuite}
import org.apache.spark.internal.Logging
import org.apache.spark.network.util.JavaUtils
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Milliseconds, StreamingContext, TestOutputStream}

class FlumeStreamSuite extends SparkFunSuite with BeforeAndAfter with Matchers with Logging {
  val conf = new SparkConf().setMaster("local[4]").setAppName("FlumeStreamSuite")
  var ssc: StreamingContext = null

  test("flume input stream") {
    testFlumeStream(testCompression = false)
  }

  test("flume input compressed stream") {
    testFlumeStream(testCompression = true)
  }

  
  private class CompressionChannelFactory(compressionLevel: Int)
    extends NioClientSocketChannelFactory {

    override def newChannel(pipeline: ChannelPipeline): SocketChannel = {
      val encoder = new ZlibEncoder(compressionLevel)
      pipeline.addFirst("deflater", encoder)
      pipeline.addFirst("inflater", new ZlibDecoder())
      super.newChannel(pipeline)
    }
  }
}