org.dmg.pmml.PMML Scala Examples
The following examples show how to use org.dmg.pmml.PMML.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: PMMLModelExport.scala From drizzle-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.mllib.pmml.export import java.text.SimpleDateFormat import java.util.Date import scala.beans.BeanProperty import org.dmg.pmml.{Application, Header, PMML, Timestamp} private[mllib] trait PMMLModelExport { @BeanProperty val pmml: PMML = { val version = getClass.getPackage.getImplementationVersion val app = new Application("Apache Spark MLlib").setVersion(version) val timestamp = new Timestamp() .addContent(new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss").format(new Date())) val header = new Header() .setApplication(app) .setTimestamp(timestamp) new PMML("4.2", header, null) } }
Example 2
Source File: PmmlEvaluatorKit.scala From flink-jpmml with GNU Affero General Public License v3.0 | 5 votes |
package io.radicalbit.flink.pmml.scala.utils import io.radicalbit.flink.pmml.scala.api.Evaluator import org.apache.flink.ml.math.{DenseVector, SparseVector, Vector} import org.dmg.pmml.{FieldName, PMML} import org.jpmml.evaluator.{FieldValueUtil, ModelEvaluatorFactory} trait PmmlEvaluatorKit { final protected def buildEvaluator(pmml: PMML): Evaluator = Evaluator(ModelEvaluatorFactory.newInstance.newModelEvaluator(pmml)) final protected def buildExpectedInputMap(in: Vector, keys: Seq[String]) = { val data: Seq[Option[Double]] = in match { case dv: DenseVector => dv.data.map(Option(_)) case sv: SparseVector => (0 to keys.size).map(index => if (sv.indices.contains(index)) Some(sv(index)) else None) } keys.zip(data).collect { case (k, Some(v)) => k -> v } toMap } final protected def buildExpectedPreparedMap(in: Map[String, Any], keys: Seq[String], replaceValue: Option[Double]) = keys.map { case k if in.contains(k) => new FieldName(k) -> FieldValueUtil.create(null, null, in(k)) case emptyKey => new FieldName(emptyKey) -> FieldValueUtil.create(null, null, replaceValue.orNull) } toMap }
Example 3
Source File: PmmlLoaderKit.scala From flink-jpmml with GNU Affero General Public License v3.0 | 5 votes |
package io.radicalbit.flink.pmml.scala.utils import org.dmg.pmml.PMML import org.jpmml.model.{ImportFilter, JAXBUtil} import org.xml.sax.InputSource trait PmmlLoaderKit { protected case object Source { val KmeansPmml = "/kmeans.xml" val KmeansPmml41 = "/kmeans41.xml" val KmeansPmml40 = "/kmeans40.xml" val KmeansPmml42 = "/kmeans42.xml" val KmeansPmml32 = "/kmeans41.xml" val KmeansPmmlEmpty = "/kmeans_empty.xml" val KmeansPmmlNoOut = "/kmeans_nooutput.xml" val KmeansPmmlStringFields = "/kmeans_stringfields.xml" val KmeansPmmlNoOutNoTrg = "/kmeans_nooutput_notarget.xml" val NotExistingPath: String = "/not/existing/" + scala.util.Random.nextString(4) } final protected def getPMMLSource(path: String): String = getClass.getResource(path).getPath final protected def getPMMLResource(path: String): PMML = { val source = scala.io.Source.fromURL(getClass.getResource(path)).reader() JAXBUtil.unmarshalPMML(ImportFilter.apply(new InputSource(source))) } }
Example 4
Source File: PMMLModelExport.scala From sparkoscope with Apache License 2.0 | 5 votes |
package org.apache.spark.mllib.pmml.export import java.text.SimpleDateFormat import java.util.{Date, Locale} import scala.beans.BeanProperty import org.dmg.pmml.{Application, Header, PMML, Timestamp} private[mllib] trait PMMLModelExport { @BeanProperty val pmml: PMML = { val version = getClass.getPackage.getImplementationVersion val app = new Application("Apache Spark MLlib").setVersion(version) val timestamp = new Timestamp() .addContent(new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss", Locale.US).format(new Date())) val header = new Header() .setApplication(app) .setTimestamp(timestamp) new PMML("4.2", header, null) } }
Example 5
Source File: PMMLModelExport.scala From multi-tenancy-spark with Apache License 2.0 | 5 votes |
package org.apache.spark.mllib.pmml.export import java.text.SimpleDateFormat import java.util.{Date, Locale} import scala.beans.BeanProperty import org.dmg.pmml.{Application, Header, PMML, Timestamp} private[mllib] trait PMMLModelExport { @BeanProperty val pmml: PMML = { val version = getClass.getPackage.getImplementationVersion val app = new Application("Apache Spark MLlib").setVersion(version) val timestamp = new Timestamp() .addContent(new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss", Locale.US).format(new Date())) val header = new Header() .setApplication(app) .setTimestamp(timestamp) new PMML("4.2", header, null) } }
Example 6
Source File: PMMLModelExport.scala From iolap with Apache License 2.0 | 5 votes |
package org.apache.spark.mllib.pmml.export import java.text.SimpleDateFormat import java.util.Date import scala.beans.BeanProperty import org.dmg.pmml.{Application, Header, PMML, Timestamp} private[mllib] trait PMMLModelExport { @BeanProperty val pmml: PMML = new PMML setHeader(pmml) private def setHeader(pmml: PMML): Unit = { val version = getClass.getPackage.getImplementationVersion val app = new Application().withName("Apache Spark MLlib").withVersion(version) val timestamp = new Timestamp() .withContent(new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss").format(new Date())) val header = new Header() .withApplication(app) .withTimestamp(timestamp) pmml.setHeader(header) } }
Example 7
Source File: PMMLModelExport.scala From spark1.52 with Apache License 2.0 | 5 votes |
package org.apache.spark.mllib.pmml.export import java.text.SimpleDateFormat import java.util.Date import scala.beans.BeanProperty import org.dmg.pmml.{Application, Header, PMML, Timestamp} private[mllib] trait PMMLModelExport { @BeanProperty val pmml: PMML = new PMML setHeader(pmml) private def setHeader(pmml: PMML): Unit = { val version = getClass.getPackage.getImplementationVersion val app = new Application().withName("Apache Spark MLlib").withVersion(version) val timestamp = new Timestamp() .withContent(new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss").format(new Date())) val header = new Header() .withApplication(app) .withTimestamp(timestamp) pmml.setHeader(header) } }
Example 8
Source File: PMMLModelExport.scala From Spark-2.3.1 with Apache License 2.0 | 5 votes |
package org.apache.spark.mllib.pmml.export import java.text.SimpleDateFormat import java.util.{Date, Locale} import scala.beans.BeanProperty import org.dmg.pmml.{Application, Header, PMML, Timestamp} private[mllib] trait PMMLModelExport { @BeanProperty val pmml: PMML = { val version = getClass.getPackage.getImplementationVersion val app = new Application("Apache Spark MLlib").setVersion(version) val timestamp = new Timestamp() .addContent(new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss", Locale.US).format(new Date())) val header = new Header() .setApplication(app) .setTimestamp(timestamp) new PMML("4.2", header, null) } }
Example 9
Source File: PMMLModelExport.scala From BigDatalog with Apache License 2.0 | 5 votes |
package org.apache.spark.mllib.pmml.export import java.text.SimpleDateFormat import java.util.Date import scala.beans.BeanProperty import org.dmg.pmml.{Application, Header, PMML, Timestamp} private[mllib] trait PMMLModelExport { @BeanProperty val pmml: PMML = new PMML pmml.setVersion("4.2") setHeader(pmml) private def setHeader(pmml: PMML): Unit = { val version = getClass.getPackage.getImplementationVersion val app = new Application().withName("Apache Spark MLlib").withVersion(version) val timestamp = new Timestamp() .withContent(new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss").format(new Date())) val header = new Header() .withApplication(app) .withTimestamp(timestamp) pmml.setHeader(header) } }
Example 10
Source File: PMMLReadWriteTest.scala From sona with Apache License 2.0 | 5 votes |
package com.tencent.angel.sona.ml.util import java.io.{File, IOException} import org.dmg.pmml.PMML import org.scalatest.Suite import org.apache.spark.SparkContext import com.tencent.angel.sona.ml.param.Params trait PMMLReadWriteTest extends TempDirectory { self: Suite => /** * Test PMML export. Requires exported model is small enough to be loaded locally. * Checks that the model can be exported and the result is valid PMML, but does not check * the specific contents of the model. */ def testPMMLWrite[T <: Params with GeneralMLWritable](sc: SparkContext, instance: T, checkModelData: PMML => Unit): Unit = { val uid = instance.uid val subdirName = Identifiable.randomUID("pmml-") val subdir = new File(tempDir, subdirName) val path = new File(subdir, uid).getPath instance.write.format("pmml").save(path) intercept[IOException] { instance.write.format("pmml").save(path) } instance.write.format("pmml").overwrite().save(path) val pmmlStr = sc.textFile(path).collect.mkString("\n") val pmmlModel = PMMLUtils.loadFromString(pmmlStr) assert(pmmlModel.getHeader.getApplication.getName.startsWith("Apache Spark")) checkModelData(pmmlModel) } }
Example 11
Source File: PMMLModel.scala From model-serving-tutorial with Apache License 2.0 | 5 votes |
package com.lightbend.modelserving.model.PMML import java.io._ import java.util import com.lightbend.model.modeldescriptor.ModelDescriptor import com.lightbend.modelserving.model.{Model, ModelFactory} import org.dmg.pmml.{FieldName, PMML} import org.jpmml.evaluator.visitors._ import org.jpmml.evaluator._ import org.jpmml.model.PMMLUtil import scala.collection._ def optimize(pmml : PMML) = this.synchronized { optimizers.foreach(opt => try { opt.applyTo(pmml) } catch { case t: Throwable => { println(s"Error optimizing model for optimizer $opt") t.printStackTrace() } } ) } }