Java Code Examples for org.neuroph.core.NeuralNetwork#load()

The following examples show how to use org.neuroph.core.NeuralNetwork#load() . You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: PerceptronSample.java    From NeurophFramework with Apache License 2.0 6 votes vote down vote up
/**
 * Runs this sample
 */
public static void main(String args[]) {

        // create training set (logical AND function)
        DataSet trainingSet = new DataSet(2, 1);
        trainingSet.add(new DataSetRow(new double[]{0, 0}, new double[]{0}));
        trainingSet.add(new DataSetRow(new double[]{0, 1}, new double[]{0}));
        trainingSet.add(new DataSetRow(new double[]{1, 0}, new double[]{0}));
        trainingSet.add(new DataSetRow(new double[]{1, 1}, new double[]{1}));

        // create perceptron neural network
        NeuralNetwork myPerceptron = new Perceptron(2, 1);
        // learn the training set
        myPerceptron.learn(trainingSet);
        // test perceptron
        System.out.println("Testing trained perceptron");
        testNeuralNetwork(myPerceptron, trainingSet);
        // save trained perceptron
        myPerceptron.save("mySamplePerceptron.nnet");
        // load saved neural network
        NeuralNetwork loadedPerceptron = NeuralNetwork.load("mySamplePerceptron.nnet");
        // test loaded neural network
        System.out.println("Testing loaded perceptron");
        testNeuralNetwork(loadedPerceptron, trainingSet);
}
 
Example 2
Source File: SingleImageAnalyzerController.java    From FakeImageDetection with GNU General Public License v3.0 6 votes vote down vote up
@FXML
private void startCheck(ActionEvent event) throws IOException {
    if (nnetSrc == null || imgSrc == null) {
        Calert.showAlert("Invalid Data", "Select Required Files", Alert.AlertType.ERROR);
        return;
    }
    try {
        nnet = NeuralNetwork.load(new FileInputStream(nnetSrc)); // load trained neural network saved with Neuroph Studio
        System.out.println("Learning Rule = " + nnet.getLearningRule());
        ImageRecognitionPlugin imageRecognition = (ImageRecognitionPlugin) nnet.getPlugin(ImageRecognitionPlugin.class); // get the 
        HashMap<String, Double> output = imageRecognition.recognizeImage(ImageIO.read(imgSrc));
        if (output == null) {
            System.err.println("Image Recognition Failed");
        }
        double real = output.get("real");
        double fake = output.get("faked");
        System.out.println(output.toString());
        Calert.showAlert("Result", "Real = " + real + "\nFake = " + fake, Alert.AlertType.INFORMATION);
    } catch (FileNotFoundException ex) {
        Logger.getLogger(SingleImageAnalyzerController.class.getName()).log(Level.SEVERE, null, ex);
    }
}
 
Example 3
Source File: NeuralNetProcessor.java    From FakeImageDetection with GNU General Public License v3.0 6 votes vote down vote up
public static void main(String[] args) {
    try {
        System.out.println("usage java -jar nn.jar image_to_be_processed file_of_neural_network");
        System.out.println("Loading Image....");
        image = ImageIO.read(new File(args[0]));
        System.out.println("Loading NN....");
        File NNetwork = new File(args[1]);
        if (!NNetwork.exists()) {
            System.err.println("Cant Find NN");
            return;
        }
        nnet = NeuralNetwork.load(new FileInputStream(NNetwork)); // load trained neural network saved with Neuroph Studio
        System.out.println("Load Image Recog Plugin....");
        imageRecognition = (ImageRecognitionPlugin) nnet.getPlugin(ImageRecognitionPlugin.class); // get the image recognition plugin from neural network
        System.out.println("Recognize Image....");
        HashMap<String, Double> output = imageRecognition.recognizeImage(image);
        System.out.println("Output is....");
        System.out.println(output.toString());
    } catch (IOException ex) {
        Logger.getLogger(NeuralNetProcessor.class.getName()).log(Level.SEVERE, null, ex);
    }
}
 
Example 4
Source File: OcrSample.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
public static void main(String[]args) {
    NeuralNetwork nnet = NeuralNetwork.load("C:\\Users\\zoran\\Desktop\\nn.nnet");
    OcrPlugin ocrPlugin = (OcrPlugin) nnet.getPlugin(OcrPlugin.class);
    
    // load letter images
    Image charImage = ImageFactory.getImage("C:\\Users\\zoran\\Desktop\\Letters\\A.png");
    Character ch = ocrPlugin.recognizeCharacter(charImage);
    System.out.println(ch);
}
 
Example 5
Source File: MetricTestMNIST.java    From NeurophFramework with Apache License 2.0 5 votes vote down vote up
/**
 * @param args command line arguments which represent paths to persisted neural network
 *             [0] - location of  neural network
 */
public static void main(String[] args) throws IOException {

    DataSet testSet = MNISTDataSet.createFromFile(MNISTDataSet.TEST_LABEL_NAME, MNISTDataSet.TEST_IMAGE_NAME, 10000);
    NeuralNetwork nn = NeuralNetwork.load(new FileInputStream(args[0]));

    Evaluation.runFullEvaluation(nn, testSet);
}
 
Example 6
Source File: NeuralNetProcessor.java    From FakeImageDetection with GNU General Public License v3.0 5 votes vote down vote up
@Override
public void doRun() {
    try {
        //Bypass network reload during comeback through home button
        if (nnet == null) {
            File NNetwork = new File(ConstantObjects.neuralNetworkPath);
            System.out.println("Nueral network loaded = " + NNetwork.getAbsolutePath());
            if (!NNetwork.exists()) {
                notifyUser();
                return;
            }
            nnet = NeuralNetwork.load(new FileInputStream(NNetwork)); // load trained neural network saved with Neuroph Studio
            System.out.println("Learning Rule = " + nnet.getLearningRule());
            imageRecognition = (ImageRecognitionPlugin) nnet.getPlugin(ImageRecognitionPlugin.class); // get the image recognition plugin from neural network
        }
        HashMap<String, Double> output = imageRecognition.recognizeImage(image);
        if (output == null) {
            System.err.println("Image Recognition Failed");
        }
        System.out.println(output.toString());
        listener.neuralnetProcessCompleted(output);

    } catch (Exception ex) {
        Logger.getLogger(NeuralNetProcessor.class.getName()).log(Level.SEVERE, null, ex);
        listener.neuralnetProcessCompleted(null);
    }
}
 
Example 7
Source File: BatchImageTrainer.java    From FakeImageDetection with GNU General Public License v3.0 5 votes vote down vote up
@Override
public void doRun() {
    try {
        System.out.println("Starting training thread....." + sampleDimension.toString() + " and " + imageLabels.toString());

        HashMap<String, BufferedImage> imagesMap = new HashMap<String, BufferedImage>();
        for (File file : srcDirectory.listFiles()) {
            imageLabels.add(FilenameUtils.removeExtension(file.getName()));
            if (sampleDimension.getWidth() > 0 && sampleDimension.getHeight() > 0) {
                Double w = sampleDimension.getWidth();
                Double h = sampleDimension.getHeight();
                imagesMap.put(file.getName(), ImageUtilities.resizeImage(ImageUtilities.loadImage(file), w.intValue(), h.intValue()));
            }
        }
        Map<String, FractionRgbData> imageRgbData = ImageUtilities.getFractionRgbDataForImages(imagesMap);
        DataSet learningData = ImageRecognitionHelper.createRGBTrainingSet(imageLabels, imageRgbData);

        nnet = NeuralNetwork.load(new FileInputStream(nnFile)); //Load NNetwork
        MomentumBackpropagation mBackpropagation = (MomentumBackpropagation) nnet.getLearningRule();
        mBackpropagation.setLearningRate(learningRate);
        mBackpropagation.setMaxError(maxError);
        mBackpropagation.setMomentum(momentum);

        System.out.println("Network Information\nLabel = " + nnet.getLabel()
                + "\n Input Neurons = " + nnet.getInputsCount()
                + "\n Number of layers = " + nnet.getLayersCount()
        );

        mBackpropagation.addListener(this);
        System.out.println("Starting training......");
        nnet.learn(learningData, mBackpropagation);
        //Training Completed
        listener.batchImageTrainingCompleted();
    } catch (FileNotFoundException ex) {
        System.out.println(ex.getMessage() + "\n" + ex.getLocalizedMessage());
    }

}
 
Example 8
Source File: FIDNetworkAnalyser.java    From FakeImageDetection with GNU General Public License v3.0 4 votes vote down vote up
public FIDNetworkAnalyser(String nSourceFile) throws FileNotFoundException {
    nnet = NeuralNetwork.load(new FileInputStream(nSourceFile)); // load trained neural network saved with Neuroph Studio
}
 
Example 9
Source File: McNemarTestMNIST.java    From NeurophFramework with Apache License 2.0 3 votes vote down vote up
/**
 * @param args command line arguments which represent paths to persisted neural networks
 *             [0] - location of first neural network
 *             [1] - location of second neural network
 */
public static void main(String[] args) throws IOException {

    DataSet testSet = MNISTDataSet.createFromFile(MNISTDataSet.TEST_LABEL_NAME, MNISTDataSet.TEST_IMAGE_NAME, 10000);

    NeuralNetwork nn1 = NeuralNetwork.load(new FileInputStream(args[0]));
    NeuralNetwork nn2 = NeuralNetwork.load(new FileInputStream(args[1]));

    new McNemarTest().evaluateNetworks(nn1, nn2, testSet);
}