Java Code Examples for org.deeplearning4j.nn.workspace.LayerWorkspaceMgr#leverageTo()
The following examples show how to use
org.deeplearning4j.nn.workspace.LayerWorkspaceMgr#leverageTo() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: CnnToFeedForwardPreProcessor.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Override public INDArray backprop(INDArray epsilons, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) { //Epsilons from layer above should be 2d, with shape [miniBatchSize, depthOut*outH*outW] if (epsilons.ordering() != 'c' || !Shape.strideDescendingCAscendingF(epsilons)) epsilons = workspaceMgr.dup(ArrayType.ACTIVATION_GRAD, epsilons, 'c'); if (epsilons.rank() == 4) return workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, epsilons); //Should never happen if (epsilons.columns() != inputWidth * inputHeight * numChannels) throw new IllegalArgumentException("Invalid input: expect output columns must be equal to rows " + inputHeight + " x columns " + inputWidth + " x channels " + numChannels + " but was instead " + Arrays.toString(epsilons.shape())); INDArray ret; if(format == CNN2DFormat.NCHW){ ret = epsilons.reshape('c', epsilons.size(0), numChannels, inputHeight, inputWidth); } else { ret = epsilons.reshape('c', epsilons.size(0), inputHeight, inputWidth, numChannels); } return workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, ret); //Move if required to specified workspace }
Example 2
Source File: BaseOutputLayer.java From deeplearning4j with Apache License 2.0 | 6 votes |
/** Returns tuple: {Gradient,Delta,Output} given preOut */ private Pair<Gradient, INDArray> getGradientsAndDelta(INDArray preOut, LayerWorkspaceMgr workspaceMgr) { ILossFunction lossFunction = layerConf().getLossFn(); INDArray labels2d = getLabels2d(workspaceMgr, ArrayType.BP_WORKING_MEM); //INDArray delta = lossFunction.computeGradient(labels2d, preOut, layerConf().getActivationFunction(), maskArray); INDArray delta = lossFunction.computeGradient(labels2d, preOut, layerConf().getActivationFn(), maskArray); Gradient gradient = new DefaultGradient(); INDArray weightGradView = gradientViews.get(DefaultParamInitializer.WEIGHT_KEY); Nd4j.gemm(input.castTo(weightGradView.dataType()), delta, weightGradView, true, false, 1.0, 0.0); //Equivalent to: weightGradView.assign(input.transpose().mmul(delta)); //TODO can we avoid cast? gradient.gradientForVariable().put(DefaultParamInitializer.WEIGHT_KEY, weightGradView); if(hasBias()){ INDArray biasGradView = gradientViews.get(DefaultParamInitializer.BIAS_KEY); delta.sum(biasGradView, 0); //biasGradView is initialized/zeroed first in sum op gradient.gradientForVariable().put(DefaultParamInitializer.BIAS_KEY, biasGradView); } delta = workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, delta); return new Pair<>(gradient, delta); }
Example 3
Source File: RnnToFeedForwardPreProcessor.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Override public INDArray preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) { //Need to reshape RNN activations (3d) activations to 2d (for input into feed forward layer) if (input.rank() != 3) throw new IllegalArgumentException( "Invalid input: expect NDArray with rank 3 (i.e., activations for RNN layer)"); if (input.ordering() != 'f' || !Shape.hasDefaultStridesForShape(input)) input = workspaceMgr.dup(ArrayType.ACTIVATIONS, input, 'f'); if (rnnDataFormat == RNNFormat.NWC){ input = input.permute(0, 2, 1); } val shape = input.shape(); INDArray ret; if (shape[0] == 1) { ret = input.tensorAlongDimension(0, 1, 2).permute(1, 0); //Edge case: miniBatchSize==1 } else if (shape[2] == 1) { ret = input.tensorAlongDimension(0, 1, 0); //Edge case: timeSeriesLength=1 } else { INDArray permuted = input.permute(0, 2, 1); //Permute, so we get correct order after reshaping ret = permuted.reshape('f', shape[0] * shape[2], shape[1]); } return workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, ret); }
Example 4
Source File: BaseOutputLayer.java From deeplearning4j with Apache License 2.0 | 6 votes |
/**Compute the score for each example individually, after labels and input have been set. * * @param fullNetRegTerm Regularization score term for the entire network (or, 0.0 to not include regularization) * @return A column INDArray of shape [numExamples,1], where entry i is the score of the ith example */ @Override public INDArray computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr) { if (input == null || labels == null) throw new IllegalStateException("Cannot calculate score without input and labels " + layerId()); INDArray preOut = preOutput2d(false, workspaceMgr); ILossFunction lossFunction = layerConf().getLossFn(); INDArray scoreArray = lossFunction.computeScoreArray(getLabels2d(workspaceMgr, ArrayType.FF_WORKING_MEM), preOut, layerConf().getActivationFn(), maskArray); if (fullNetRegTerm != 0.0) { scoreArray.addi(fullNetRegTerm); } return workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, scoreArray); }
Example 5
Source File: FeedForwardToRnnPreProcessor.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Override public INDArray preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) { //Need to reshape FF activations (2d) activations to 3d (for input into RNN layer) if (input.rank() != 2) throw new IllegalArgumentException( "Invalid input: expect NDArray with rank 2 (i.e., activations for FF layer)"); if (input.ordering() != 'f' || !Shape.hasDefaultStridesForShape(input)) input = workspaceMgr.dup(ArrayType.ACTIVATIONS, input, 'f'); val shape = input.shape(); INDArray reshaped = input.reshape('f', miniBatchSize, shape[0] / miniBatchSize, shape[1]); if (rnnDataFormat == RNNFormat.NCW){ reshaped = reshaped.permute(0, 2, 1); } return workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, reshaped); }
Example 6
Source File: ReshapePreprocessor.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Override public INDArray preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) { // the target shape read from a keras config does not have mini-batch size included. We prepend it here dynamically. long[] targetShape = getShape(this.targetShape, miniBatchSize); long[] inputShape = getShape(this.inputShape, miniBatchSize); if (prodLong(input.shape()) == prodLong((targetShape))) { if (input.ordering() != 'c' || !Shape.hasDefaultStridesForShape(input)) { input = workspaceMgr.dup(ArrayType.ACTIVATIONS, input, 'c'); } return workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, input.reshape(targetShape)); } else { throw new IllegalStateException("Input shape " + Arrays.toString(input.shape()) + " and output shape" + Arrays.toString(inputShape) + " do not match"); } }
Example 7
Source File: Cnn3DToFeedForwardPreProcessor.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Override public INDArray preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) { if (input.rank() == 2) return input; // Pass-through feed-forward input // We expect either NCDHW or NDHWC format if ((isNCDHW && input.size(1) != numChannels) || (!isNCDHW && input.size(4) != numChannels)) { throw new IllegalStateException("Invalid input array: expected shape in format " + "[minibatch, channels, channels, height, width] or " + "[minibatch, channels, height, width, channels]" + " for numChannels: " + numChannels + ", inputDepth " + inputDepth + ", inputHeight " + inputHeight + " and inputWidth " + inputWidth + ", but got " + Arrays.toString(input.shape())); } if (!hasDefaultStridesForShape(input)) input = workspaceMgr.dup(ArrayType.ACTIVATIONS, input, 'c'); val inShape = input.shape(); val outShape = new long[]{inShape[0], inShape[1] * inShape[2] * inShape[3] * inShape[4]}; return workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, input.reshape('c', outShape)); }
Example 8
Source File: Cnn3DLossLayer.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public Pair<Gradient, INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) { assertInputSet(true); if (input.rank() != 5) throw new UnsupportedOperationException( "Input is not rank 5. Got input with rank " + input.rank() + " " + layerId() + " with shape " + Arrays.toString(input.shape()) + " - expected shape [minibatch,channels,depth,height,width]"); if (labels == null) throw new IllegalStateException("Labels are not set (null)"); INDArray input2d = ConvolutionUtils.reshape5dTo2d(layerConf().getDataFormat(), input, workspaceMgr, ArrayType.FF_WORKING_MEM); INDArray labels2d = ConvolutionUtils.reshape5dTo2d(layerConf().getDataFormat(), labels, workspaceMgr, ArrayType.FF_WORKING_MEM); INDArray maskReshaped = ConvolutionUtils.reshapeCnn3dMask(layerConf().getDataFormat(), maskArray, labels, workspaceMgr, ArrayType.FF_WORKING_MEM); // delta calculation ILossFunction lossFunction = layerConf().getLossFn(); INDArray delta2d = lossFunction.computeGradient(labels2d, input2d.dup(input2d.ordering()), layerConf().getActivationFn(), maskReshaped); delta2d = workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, delta2d); long n = input.size(0); long d, h, w, c; if(layerConf().getDataFormat() == Convolution3D.DataFormat.NDHWC){ d = input.size(1); h = input.size(2); w = input.size(3); c = input.size(4); } else { d = input.size(2); h = input.size(3); w = input.size(4); c = input.size(1); } INDArray delta5d = ConvolutionUtils.reshape2dTo5d(layerConf().getDataFormat(), delta2d, n, d, h, w, c, workspaceMgr, ArrayType.ACTIVATION_GRAD); // grab the empty gradient Gradient gradient = new DefaultGradient(); return new Pair<>(gradient, delta5d); }
Example 9
Source File: FeedForwardToCnn3DPreProcessor.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public INDArray backprop(INDArray epsilons, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) { if (!hasDefaultStridesForShape(epsilons)) epsilons = workspaceMgr.dup(ArrayType.ACTIVATION_GRAD, epsilons, 'c'); if (shape == null || ArrayUtil.prod(shape) != epsilons.length()) { INDArray ret = epsilons.reshape('c', epsilons.size(0),inputDepth * inputHeight * inputWidth * numChannels); return workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, ret); } return workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, epsilons.reshape('c', shape)); }
Example 10
Source File: ConvolutionUtils.java From deeplearning4j with Apache License 2.0 | 5 votes |
public static INDArray reshape5dTo2d(@NonNull Convolution3D.DataFormat format, INDArray in, LayerWorkspaceMgr workspaceMgr, ArrayType type){ Preconditions.checkState(in.rank() == 5, "Invalid input: expect NDArray with rank 5, got rank %ndRank with shape %ndShape", in, in); //Reshape: from either [n,c,d,h,w] to [n*d*h*w,c] (NCDHW format) // or reshape from [n,d,h,w,c] to [n*d*h*w,c] (NDHWC format) if(format != Convolution3D.DataFormat.NDHWC){ in = in.permute(0, 2, 3, 4, 1); } if(in.ordering() != 'c' || !Shape.hasDefaultStridesForShape(in)) in = workspaceMgr.dup(type, in, 'c'); return workspaceMgr.leverageTo(type, in.reshape('c', in.size(0)*in.size(1)*in.size(2)*in.size(3), in.size(4))); }
Example 11
Source File: TensorFlowCnnToFeedForwardPreProcessor.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public INDArray preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) { if (input.rank() == 2) return workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, input); //Should usually never happen /* DL4J convolutional input: # channels, # rows, # cols * TensorFlow convolutional input: # rows, # cols, # channels * Theano convolutional input: # channels, # rows, # cols */ INDArray permuted = workspaceMgr.dup(ArrayType.ACTIVATIONS, input.permute(0, 2, 3, 1), 'c'); //To: [n, h, w, c] val inShape = input.shape(); //[miniBatch,depthOut,outH,outW] val outShape = new long[]{inShape[0], inShape[1] * inShape[2] * inShape[3]}; return workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, permuted.reshape('c', outShape)); }
Example 12
Source File: LossLayer.java From deeplearning4j with Apache License 2.0 | 5 votes |
/**Compute the score for each example individually, after labels and input have been set. * * @param fullNetRegTerm Regularization score term for the entire network (or, 0.0 to not include regularization) * @return A column INDArray of shape [numExamples,1], where entry i is the score of the ith example */ @Override public INDArray computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr) { if (input == null || labels == null) throw new IllegalStateException("Cannot calculate score without input and labels " + layerId()); INDArray preOut = input; ILossFunction lossFunction = layerConf().getLossFn(); INDArray scoreArray = lossFunction.computeScoreArray(getLabels2d(), preOut, layerConf().getActivationFn(), maskArray); if (fullNetRegTerm != 0.0) { scoreArray.addi(fullNetRegTerm); } return workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, scoreArray); }
Example 13
Source File: LossLayer.java From deeplearning4j with Apache License 2.0 | 5 votes |
/** Returns tuple: {Gradient,Delta,Output} given preOut */ private Pair<Gradient, INDArray> getGradientsAndDelta(INDArray preOut, LayerWorkspaceMgr workspaceMgr) { // delta calculation ILossFunction lossFunction = layerConf().getLossFn(); INDArray delta = lossFunction.computeGradient(getLabels2d(), preOut, layerConf().getActivationFn(), maskArray); // grab the empty gradient Gradient gradient = new DefaultGradient(); delta = workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, delta); return new Pair<>(gradient, delta); }
Example 14
Source File: LossLayer.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) { INDArray z = input; INDArray ret = layerConf().getActivationFn().getActivation(z.dup(), training); if (maskArray != null) { ret.muliColumnVector(maskArray); } INDArray out = workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, ret); return out; }
Example 15
Source File: Cnn3DLossLayer.java From deeplearning4j with Apache License 2.0 | 4 votes |
/** * Compute the score for each example individually, after labels and input have been set. * * @param fullNetRegTerm Regularization score term for the entire network (or, 0.0 to not include regularization) * @return A column INDArray of shape [numExamples,1], where entry i is the score of the ith example */ @Override public INDArray computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr) { //For 3D CNN: need to sum up the score over each x/y/z location before returning if (input == null || labels == null) throw new IllegalStateException("Cannot calculate score without input and labels " + layerId()); INDArray input2d = ConvolutionUtils.reshape5dTo2d(layerConf().getDataFormat(), input, workspaceMgr, ArrayType.FF_WORKING_MEM); INDArray labels2d = ConvolutionUtils.reshape5dTo2d(layerConf().getDataFormat(), labels, workspaceMgr, ArrayType.FF_WORKING_MEM); INDArray maskReshaped = ConvolutionUtils.reshapeCnn3dMask(layerConf().getDataFormat(), maskArray, input, workspaceMgr, ArrayType.FF_WORKING_MEM); ILossFunction lossFunction = layerConf().getLossFn(); INDArray scoreArray = lossFunction.computeScoreArray(labels2d, input2d, layerConf().getActivationFn(), maskReshaped); //scoreArray: shape [minibatch*d*h*w, 1] //Reshape it to [minibatch, 1, d, h, w] then sum over x/y/z to give [minibatch, 1] val newShape = input.shape().clone(); newShape[1] = 1; long n = input.size(0); long d, h, w, c; if(layerConf().getDataFormat() == Convolution3D.DataFormat.NDHWC){ d = input.size(1); h = input.size(2); w = input.size(3); c = input.size(4); } else { d = input.size(2); h = input.size(3); w = input.size(4); c = input.size(1); } INDArray scoreArrayTs = ConvolutionUtils.reshape2dTo5d(layerConf().getDataFormat(), scoreArray, n, d, h, w, c, workspaceMgr, ArrayType.FF_WORKING_MEM); INDArray summedScores = scoreArrayTs.sum(1,2,3,4); if (fullNetRegTerm != 0.0) { summedScores.addi(fullNetRegTerm); } return workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, summedScores); }
Example 16
Source File: MaskLayer.java From deeplearning4j with Apache License 2.0 | 4 votes |
private static INDArray applyMask(INDArray input, INDArray maskArray, LayerWorkspaceMgr workspaceMgr, ArrayType type){ if(maskArray == null){ return workspaceMgr.leverageTo(type, input); } switch (input.rank()){ case 2: if(!maskArray.isColumnVectorOrScalar() || maskArray.size(0) != input.size(0)){ throw new IllegalStateException("Expected column vector for mask with 2d input, with same size(0)" + " as input. Got mask with shape: " + Arrays.toString(maskArray.shape()) + ", input shape = " + Arrays.toString(input.shape())); } return workspaceMgr.leverageTo(type, input.mulColumnVector(maskArray)); case 3: //Time series input, shape [Minibatch, size, tsLength], Expect rank 2 mask if(maskArray.rank() != 2 || input.size(0) != maskArray.size(0) || input.size(2) != maskArray.size(1)){ throw new IllegalStateException("With 3d (time series) input with shape [minibatch, size, sequenceLength]=" + Arrays.toString(input.shape()) + ", expected 2d mask array with shape [minibatch, sequenceLength]." + " Got mask with shape: "+ Arrays.toString(maskArray.shape())); } INDArray fwd = workspaceMgr.createUninitialized(type, input.dataType(), input.shape(), 'f'); Broadcast.mul(input, maskArray, fwd, 0, 2); return fwd; case 4: //CNN input. Expect column vector to be shape [mb,1,h,1], [mb,1,1,w], or [mb,1,h,w] int[] dimensions = new int[4]; int count = 0; for(int i=0; i<4; i++ ){ if(input.size(i) == maskArray.size(i)){ dimensions[count++] = i; } } if(count < 4){ dimensions = Arrays.copyOfRange(dimensions, 0, count); } INDArray fwd2 = workspaceMgr.createUninitialized(type, input.dataType(), input.shape(), 'c'); Broadcast.mul(input, maskArray, fwd2, dimensions); return fwd2; default: throw new RuntimeException("Expected rank 2 to 4 input. Got rank " + input.rank() + " with shape " + Arrays.toString(input.shape())); } }
Example 17
Source File: GlobalPoolingLayer.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Override public Pair<Gradient, INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) { assertInputSet(true); if (!layerConf().isCollapseDimensions() && epsilon.rank() != 2) { val origShape = epsilon.shape(); //Don't collapse dims case: error should be [minibatch, vectorSize, 1] or [minibatch, channels, 1, 1] //Reshape it to 2d, to get rid of the 1s epsilon = epsilon.reshape(epsilon.ordering(), origShape[0], origShape[1]); } INDArray input = this.input.castTo(dataType); //No-op if already correct dtype Gradient retGradient = new DefaultGradient(); //Empty: no params int[] poolDim = null; if (input.rank() == 3) { if (poolingDimensions == null) { //Use default pooling dimensions; poolDim = DEFAULT_TIMESERIES_POOL_DIMS; } else { poolDim = poolingDimensions; } } else if (input.rank() == 4) { //CNN activations if (poolingDimensions == null) { //Use default pooling dimensions; poolDim = DEFAULT_CNN_POOL_DIMS; } else { poolDim = poolingDimensions; } } else if (input.rank() == 5) { //CNN activations if (poolingDimensions == null) { //Use default pooling dimensions; poolDim = DEFAULT_CNN3D_POOL_DIMS; } else { poolDim = poolingDimensions; } } // TODO: masking for CNN3D case INDArray epsilonNd; if (maskArray == null) { //Standard 'full array' global pooling op epsilonNd = epsilonHelperFullArray(input, epsilon, poolDim); } else { if (input.rank() == 3) { epsilonNd = MaskedReductionUtil.maskedPoolingEpsilonTimeSeries(poolingType, input, maskArray, epsilon, pNorm); } else if (input.rank() == 4) { epsilonNd = MaskedReductionUtil.maskedPoolingEpsilonCnn(poolingType, input, maskArray, epsilon, pNorm, dataType); } else { throw new UnsupportedOperationException(layerId()); } } //TODO optimize without leverage epsilonNd = workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, epsilonNd); return new Pair<>(retGradient, epsilonNd); }
Example 18
Source File: CnnToFeedForwardPreProcessor.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Override // return 2 dimensions public INDArray preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) { if (input.rank() == 2) return input; //Should usually never happen int chDim = 1; int hDim = 2; int wDim = 3; if(format == CNN2DFormat.NHWC){ chDim = 3; hDim = 1; wDim = 2; } if(inputHeight == 0 && inputWidth == 0 && numChannels == 0){ this.inputHeight = input.size(hDim); this.inputWidth = input.size(wDim); this.numChannels = input.size(chDim); } if(input.size(chDim) != numChannels || input.size(hDim) != inputHeight || input.size(wDim) != inputWidth){ throw new IllegalStateException("Invalid input, does not match configuration: expected " + (format == CNN2DFormat.NCHW ? "[minibatch, numChannels=" + numChannels + ", inputHeight=" + inputHeight + ", inputWidth=" + inputWidth + "] " : "[minibatch, inputHeight=" + inputHeight + ", inputWidth=" + inputWidth + ", numChannels=" + numChannels + "]") + " but got input array of shape " + Arrays.toString(input.shape())); } //Check input: nchw format if(input.size(chDim) != numChannels || input.size(hDim) != inputHeight || input.size(wDim) != inputWidth){ throw new IllegalStateException("Invalid input array: expected shape [minibatch, channels, height, width] = " + "[minibatch, " + numChannels + ", " + inputHeight + ", " + inputWidth + "] - got " + Arrays.toString(input.shape())); } //Assume input is standard rank 4 activations out of CNN layer //First: we require input to be in c order. But c order (as declared in array order) isn't enough; also need strides to be correct if (input.ordering() != 'c' || !Shape.hasDefaultStridesForShape(input)) input = workspaceMgr.dup(ArrayType.ACTIVATIONS, input, 'c'); //Note that to match Tensorflow/Keras, we do a simple "c order reshape" for both NCHW and NHWC val inShape = input.shape(); //[miniBatch,depthOut,outH,outW] val outShape = new long[]{inShape[0], inShape[1] * inShape[2] * inShape[3]}; return workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, input.reshape('c', outShape)); //Should be zero copy reshape }
Example 19
Source File: ComposableInputPreProcessor.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Override public INDArray preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) { for (InputPreProcessor preProcessor : inputPreProcessors) input = preProcessor.preProcess(input, miniBatchSize, workspaceMgr); return workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, input); }
Example 20
Source File: InOutputPlatPreProcessor.java From dl4j-tutorials with MIT License | 4 votes |
@Override public INDArray backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) { return workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, output); }