Java Code Examples for org.apache.commons.math.util.FastMath#max()
The following examples show how to use
org.apache.commons.math.util.FastMath#max() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: MullerSolverTest.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Test of solver for the exponential function. * <p> * It takes 10 to 15 iterations for the last two tests to converge. * In fact, if not for the bisection alternative, the solver would * exceed the default maximal iteration of 100. */ @Test public void testExpm1Function() { UnivariateRealFunction f = new Expm1Function(); UnivariateRealSolver solver = new MullerSolver(); double min, max, expected, result, tolerance; min = -1.0; max = 2.0; expected = 0.0; tolerance = FastMath.max(solver.getAbsoluteAccuracy(), FastMath.abs(expected * solver.getRelativeAccuracy())); result = solver.solve(100, f, min, max); Assert.assertEquals(expected, result, tolerance); min = -20.0; max = 10.0; expected = 0.0; tolerance = FastMath.max(solver.getAbsoluteAccuracy(), FastMath.abs(expected * solver.getRelativeAccuracy())); result = solver.solve(100, f, min, max); Assert.assertEquals(expected, result, tolerance); min = -50.0; max = 100.0; expected = 0.0; tolerance = FastMath.max(solver.getAbsoluteAccuracy(), FastMath.abs(expected * solver.getRelativeAccuracy())); result = solver.solve(100, f, min, max); Assert.assertEquals(expected, result, tolerance); }
Example 2
Source File: AbstractIntegrator.java From astor with GNU General Public License v2.0 | 6 votes |
/** Perform some sanity checks on the integration parameters. * @param ode differential equations set * @param t0 start time * @param y0 state vector at t0 * @param t target time for the integration * @param y placeholder where to put the state vector * @exception IntegratorException if some inconsistency is detected */ protected void sanityChecks(final FirstOrderDifferentialEquations ode, final double t0, final double[] y0, final double t, final double[] y) throws IntegratorException { if (ode.getDimension() != y0.length) { throw new IntegratorException( LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, ode.getDimension(), y0.length); } if (ode.getDimension() != y.length) { throw new IntegratorException( LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, ode.getDimension(), y.length); } if (FastMath.abs(t - t0) <= 1.0e-12 * FastMath.max(FastMath.abs(t0), FastMath.abs(t))) { throw new IntegratorException( LocalizedFormats.TOO_SMALL_INTEGRATION_INTERVAL, FastMath.abs(t - t0)); } }
Example 3
Source File: BlockRealMatrix.java From astor with GNU General Public License v2.0 | 6 votes |
/** {@inheritDoc} */ @Override public double getNorm() { final double[] colSums = new double[BLOCK_SIZE]; double maxColSum = 0; for (int jBlock = 0; jBlock < blockColumns; jBlock++) { final int jWidth = blockWidth(jBlock); Arrays.fill(colSums, 0, jWidth, 0.0); for (int iBlock = 0; iBlock < blockRows; ++iBlock) { final int iHeight = blockHeight(iBlock); final double[] block = blocks[iBlock * blockColumns + jBlock]; for (int j = 0; j < jWidth; ++j) { double sum = 0; for (int i = 0; i < iHeight; ++i) { sum += FastMath.abs(block[i * jWidth + j]); } colSums[j] += sum; } } for (int j = 0; j < jWidth; ++j) { maxColSum = FastMath.max(maxColSum, colSums[j]); } } return maxColSum; }
Example 4
Source File: EigenDecompositionImpl.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Check if a matrix is symmetric. * * @param matrix Matrix to check. * @param raiseException If {@code true}, the method will throw an * exception if {@code matrix} is not symmetric. * @return {@code true} if {@code matrix} is symmetric. * @throws NonSymmetricMatrixException if the matrix is not symmetric and * {@code raiseException} is {@code true}. */ private boolean isSymmetric(final RealMatrix matrix, boolean raiseException) { final int rows = matrix.getRowDimension(); final int columns = matrix.getColumnDimension(); final double eps = 10 * rows * columns * MathUtils.EPSILON; for (int i = 0; i < rows; ++i) { for (int j = i + 1; j < columns; ++j) { final double mij = matrix.getEntry(i, j); final double mji = matrix.getEntry(j, i); if (FastMath.abs(mij - mji) > (FastMath.max(FastMath.abs(mij), FastMath.abs(mji)) * eps)) { if (raiseException) { throw new NonSymmetricMatrixException(i, j, eps); } return false; } } } return true; }
Example 5
Source File: MullerSolverTest.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Test of solver for the sine function. */ public void testSinFunction() throws MathException { UnivariateRealFunction f = new SinFunction(); UnivariateRealSolver solver = new MullerSolver(); double min, max, expected, result, tolerance; min = 3.0; max = 4.0; expected = FastMath.PI; tolerance = FastMath.max(solver.getAbsoluteAccuracy(), FastMath.abs(expected * solver.getRelativeAccuracy())); result = solver.solve(f, min, max); assertEquals(expected, result, tolerance); min = -1.0; max = 1.5; expected = 0.0; tolerance = FastMath.max(solver.getAbsoluteAccuracy(), FastMath.abs(expected * solver.getRelativeAccuracy())); result = solver.solve(f, min, max); assertEquals(expected, result, tolerance); }
Example 6
Source File: BlockRealMatrix.java From astor with GNU General Public License v2.0 | 6 votes |
/** {@inheritDoc} */ @Override public double getNorm() { final double[] colSums = new double[BLOCK_SIZE]; double maxColSum = 0; for (int jBlock = 0; jBlock < blockColumns; jBlock++) { final int jWidth = blockWidth(jBlock); Arrays.fill(colSums, 0, jWidth, 0.0); for (int iBlock = 0; iBlock < blockRows; ++iBlock) { final int iHeight = blockHeight(iBlock); final double[] block = blocks[iBlock * blockColumns + jBlock]; for (int j = 0; j < jWidth; ++j) { double sum = 0; for (int i = 0; i < iHeight; ++i) { sum += FastMath.abs(block[i * jWidth + j]); } colSums[j] += sum; } } for (int j = 0; j < jWidth; ++j) { maxColSum = FastMath.max(maxColSum, colSums[j]); } } return maxColSum; }
Example 7
Source File: ContinuousDistributionAbstractTest.java From astor with GNU General Public License v2.0 | 6 votes |
/** * Verifies that probability computations are consistent */ @Test public void testConsistency() throws Exception { for (int i=1; i < cumulativeTestPoints.length; i++) { // check that cdf(x, x) = 0 TestUtils.assertEquals(0d, distribution.cumulativeProbability (cumulativeTestPoints[i], cumulativeTestPoints[i]), tolerance); // check that P(a < X < b) = P(X < b) - P(X < a) double upper = FastMath.max(cumulativeTestPoints[i], cumulativeTestPoints[i -1]); double lower = FastMath.min(cumulativeTestPoints[i], cumulativeTestPoints[i -1]); double diff = distribution.cumulativeProbability(upper) - distribution.cumulativeProbability(lower); double direct = distribution.cumulativeProbability(lower, upper); TestUtils.assertEquals("Inconsistent cumulative probabilities for (" + lower + "," + upper + ")", diff, direct, tolerance); } }
Example 8
Source File: BlockRealMatrix.java From astor with GNU General Public License v2.0 | 5 votes |
/** {@inheritDoc} */ @Override public double walkInOptimizedOrder(final RealMatrixPreservingVisitor visitor, final int startRow, final int endRow, final int startColumn, final int endColumn) { MatrixUtils.checkSubMatrixIndex(this, startRow, endRow, startColumn, endColumn); visitor.start(rows, columns, startRow, endRow, startColumn, endColumn); for (int iBlock = startRow / BLOCK_SIZE; iBlock < 1 + endRow / BLOCK_SIZE; ++iBlock) { final int p0 = iBlock * BLOCK_SIZE; final int pStart = FastMath.max(startRow, p0); final int pEnd = FastMath.min((iBlock + 1) * BLOCK_SIZE, 1 + endRow); for (int jBlock = startColumn / BLOCK_SIZE; jBlock < 1 + endColumn / BLOCK_SIZE; ++jBlock) { final int jWidth = blockWidth(jBlock); final int q0 = jBlock * BLOCK_SIZE; final int qStart = FastMath.max(startColumn, q0); final int qEnd = FastMath.min((jBlock + 1) * BLOCK_SIZE, 1 + endColumn); final double[] block = blocks[iBlock * blockColumns + jBlock]; for (int p = pStart; p < pEnd; ++p) { int k = (p - p0) * jWidth + qStart - q0; for (int q = qStart; q < qEnd; ++q) { visitor.visit(p, q, block[k]); ++k; } } } } return visitor.end(); }
Example 9
Source File: BlockRealMatrix.java From astor with GNU General Public License v2.0 | 5 votes |
/** {@inheritDoc} */ @Override public double walkInOptimizedOrder(final RealMatrixChangingVisitor visitor, final int startRow, final int endRow, final int startColumn, final int endColumn) { MatrixUtils.checkSubMatrixIndex(this, startRow, endRow, startColumn, endColumn); visitor.start(rows, columns, startRow, endRow, startColumn, endColumn); for (int iBlock = startRow / BLOCK_SIZE; iBlock < 1 + endRow / BLOCK_SIZE; ++iBlock) { final int p0 = iBlock * BLOCK_SIZE; final int pStart = FastMath.max(startRow, p0); final int pEnd = FastMath.min((iBlock + 1) * BLOCK_SIZE, 1 + endRow); for (int jBlock = startColumn / BLOCK_SIZE; jBlock < 1 + endColumn / BLOCK_SIZE; ++jBlock) { final int jWidth = blockWidth(jBlock); final int q0 = jBlock * BLOCK_SIZE; final int qStart = FastMath.max(startColumn, q0); final int qEnd = FastMath.min((jBlock + 1) * BLOCK_SIZE, 1 + endColumn); final double[] block = blocks[iBlock * blockColumns + jBlock]; for (int p = pStart; p < pEnd; ++p) { int k = (p - p0) * jWidth + qStart - q0; for (int q = qStart; q < qEnd; ++q) { block[k] = visitor.visit(p, q, block[k]); ++k; } } } } return visitor.end(); }
Example 10
Source File: BlockFieldMatrix.java From astor with GNU General Public License v2.0 | 5 votes |
/** {@inheritDoc} */ @Override public T walkInRowOrder(final FieldMatrixPreservingVisitor<T> visitor, final int startRow, final int endRow, final int startColumn, final int endColumn) { checkSubMatrixIndex(startRow, endRow, startColumn, endColumn); visitor.start(rows, columns, startRow, endRow, startColumn, endColumn); for (int iBlock = startRow / BLOCK_SIZE; iBlock < 1 + endRow / BLOCK_SIZE; ++iBlock) { final int p0 = iBlock * BLOCK_SIZE; final int pStart = FastMath.max(startRow, p0); final int pEnd = FastMath.min((iBlock + 1) * BLOCK_SIZE, 1 + endRow); for (int p = pStart; p < pEnd; ++p) { for (int jBlock = startColumn / BLOCK_SIZE; jBlock < 1 + endColumn / BLOCK_SIZE; ++jBlock) { final int jWidth = blockWidth(jBlock); final int q0 = jBlock * BLOCK_SIZE; final int qStart = FastMath.max(startColumn, q0); final int qEnd = FastMath.min((jBlock + 1) * BLOCK_SIZE, 1 + endColumn); final T[] block = blocks[iBlock * blockColumns + jBlock]; int k = (p - p0) * jWidth + qStart - q0; for (int q = qStart; q < qEnd; ++q) { visitor.visit(p, q, block[k]); ++k; } } } } return visitor.end(); }
Example 11
Source File: EventState.java From astor with GNU General Public License v2.0 | 5 votes |
/** Reinitialize the beginning of the step. * @param interpolator valid for the current step * @exception EventException if the event handler * value cannot be evaluated at the beginning of the step */ public void reinitializeBegin(final StepInterpolator interpolator) throws EventException { try { t0 = interpolator.getPreviousTime(); interpolator.setInterpolatedTime(t0); g0 = handler.g(t0, interpolator.getInterpolatedState()); if (g0 == 0) { // excerpt from MATH-421 issue: // If an ODE solver is setup with an EventHandler that return STOP // when the even is triggered, the integrator stops (which is exactly // the expected behavior). If however the user wants to restart the // solver from the final state reached at the event with the same // configuration (expecting the event to be triggered again at a // later time), then the integrator may fail to start. It can get stuck // at the previous event. The use case for the bug MATH-421 is fairly // general, so events occurring exactly at start in the first step should // be ignored. // extremely rare case: there is a zero EXACTLY at interval start // we will use the sign slightly after step beginning to force ignoring this zero final double epsilon = FastMath.max(solver.getAbsoluteAccuracy(), FastMath.abs(solver.getRelativeAccuracy() * t0)); final double tStart = t0 + 0.5 * epsilon; interpolator.setInterpolatedTime(tStart); g0 = handler.g(tStart, interpolator.getInterpolatedState()); } g0Positive = g0 >= 0; } catch (MathUserException mue) { throw new EventException(mue); } }
Example 12
Source File: MullerSolver2.java From astor with GNU General Public License v2.0 | 4 votes |
/** * {@inheritDoc} */ @Override protected double doSolve() { final double min = getMin(); final double max = getMax(); verifyInterval(min, max); final double relativeAccuracy = getRelativeAccuracy(); final double absoluteAccuracy = getAbsoluteAccuracy(); final double functionValueAccuracy = getFunctionValueAccuracy(); // x2 is the last root approximation // x is the new approximation and new x2 for next round // x0 < x1 < x2 does not hold here double x0 = min; double y0 = computeObjectiveValue(x0); if (FastMath.abs(y0) < functionValueAccuracy) { return x0; } double x1 = max; double y1 = computeObjectiveValue(x1); if (FastMath.abs(y1) < functionValueAccuracy) { return x1; } if(y0 * y1 > 0) { throw new NoBracketingException(x0, x1, y0, y1); } double x2 = 0.5 * (x0 + x1); double y2 = computeObjectiveValue(x2); double oldx = Double.POSITIVE_INFINITY; while (true) { // quadratic interpolation through x0, x1, x2 final double q = (x2 - x1) / (x1 - x0); final double a = q * (y2 - (1 + q) * y1 + q * y0); final double b = (2 * q + 1) * y2 - (1 + q) * (1 + q) * y1 + q * q * y0; final double c = (1 + q) * y2; final double delta = b * b - 4 * a * c; double x; final double denominator; if (delta >= 0.0) { // choose a denominator larger in magnitude double dplus = b + FastMath.sqrt(delta); double dminus = b - FastMath.sqrt(delta); denominator = FastMath.abs(dplus) > FastMath.abs(dminus) ? dplus : dminus; } else { // take the modulus of (B +/- FastMath.sqrt(delta)) denominator = FastMath.sqrt(b * b - delta); } if (denominator != 0) { x = x2 - 2.0 * c * (x2 - x1) / denominator; // perturb x if it exactly coincides with x1 or x2 // the equality tests here are intentional while (x == x1 || x == x2) { x += absoluteAccuracy; } } else { // extremely rare case, get a random number to skip it x = min + FastMath.random() * (max - min); oldx = Double.POSITIVE_INFINITY; } final double y = computeObjectiveValue(x); // check for convergence final double tolerance = FastMath.max(relativeAccuracy * FastMath.abs(x), absoluteAccuracy); if (FastMath.abs(x - oldx) <= tolerance || FastMath.abs(y) <= functionValueAccuracy) { return x; } // prepare the next iteration x0 = x1; y0 = y1; x1 = x2; y1 = y2; x2 = x; y2 = y; oldx = x; } }
Example 13
Source File: Nopol2017_0067_s.java From coming with MIT License | 4 votes |
/** Initialize the integration step. * @param forward forward integration indicator * @param order order of the method * @param scale scaling vector for the state vector (can be shorter than state vector) * @param t0 start time * @param y0 state vector at t0 * @param yDot0 first time derivative of y0 * @param y1 work array for a state vector * @param yDot1 work array for the first time derivative of y1 * @return first integration step */ public double initializeStep(final boolean forward, final int order, final double[] scale, final double t0, final double[] y0, final double[] yDot0, final double[] y1, final double[] yDot1) { if (initialStep > 0) { // use the user provided value return forward ? initialStep : -initialStep; } // very rough first guess : h = 0.01 * ||y/scale|| / ||y'/scale|| // this guess will be used to perform an Euler step double ratio; double yOnScale2 = 0; double yDotOnScale2 = 0; for (int j = 0; j < scale.length; ++j) { ratio = y0[j] / scale[j]; yOnScale2 += ratio * ratio; ratio = yDot0[j] / scale[j]; yDotOnScale2 += ratio * ratio; } double h = ((yOnScale2 < 1.0e-10) || (yDotOnScale2 < 1.0e-10)) ? 1.0e-6 : (0.01 * FastMath.sqrt(yOnScale2 / yDotOnScale2)); if (! forward) { h = -h; } // perform an Euler step using the preceding rough guess for (int j = 0; j < y0.length; ++j) { y1[j] = y0[j] + h * yDot0[j]; } computeDerivatives(t0 + h, y1, yDot1); // estimate the second derivative of the solution double yDDotOnScale = 0; for (int j = 0; j < scale.length; ++j) { ratio = (yDot1[j] - yDot0[j]) / scale[j]; yDDotOnScale += ratio * ratio; } yDDotOnScale = FastMath.sqrt(yDDotOnScale) / h; // step size is computed such that // h^order * max (||y'/tol||, ||y''/tol||) = 0.01 final double maxInv2 = FastMath.max(FastMath.sqrt(yDotOnScale2), yDDotOnScale); final double h1 = (maxInv2 < 1.0e-15) ? FastMath.max(1.0e-6, 0.001 * FastMath.abs(h)) : FastMath.pow(0.01 / maxInv2, 1.0 / order); h = FastMath.min(100.0 * FastMath.abs(h), h1); h = FastMath.max(h, 1.0e-12 * FastMath.abs(t0)); // avoids cancellation when computing t1 - t0 if (h < getMinStep()) { h = getMinStep(); } if (h > getMaxStep()) { h = getMaxStep(); } if (! forward) { h = -h; } return h; }
Example 14
Source File: Vector3D.java From astor with GNU General Public License v2.0 | 4 votes |
/** Get the L<sub>∞</sub> norm for the vector. * @return L<sub>∞</sub> norm for the vector */ public double getNormInf() { return FastMath.max(FastMath.max(FastMath.abs(x), FastMath.abs(y)), FastMath.abs(z)); }
Example 15
Source File: UnivariateRealSolverUtils.java From astor with GNU General Public License v2.0 | 4 votes |
/** * This method attempts to find two values a and b satisfying <ul> * <li> <code> lowerBound <= a < initial < b <= upperBound</code> </li> * <li> <code> f(a) * f(b) <= 0 </code> </li> * </ul> * If f is continuous on <code>[a,b],</code> this means that <code>a</code> * and <code>b</code> bracket a root of f. * <p> * The algorithm starts by setting * <code>a := initial -1; b := initial +1,</code> examines the value of the * function at <code>a</code> and <code>b</code> and keeps moving * the endpoints out by one unit each time through a loop that terminates * when one of the following happens: <ul> * <li> <code> f(a) * f(b) <= 0 </code> -- success!</li> * <li> <code> a = lower </code> and <code> b = upper</code> * -- ConvergenceException </li> * <li> <code> maximumIterations</code> iterations elapse * -- ConvergenceException </li></ul></p> * * @param function the function * @param initial initial midpoint of interval being expanded to * bracket a root * @param lowerBound lower bound (a is never lower than this value) * @param upperBound upper bound (b never is greater than this * value) * @param maximumIterations maximum number of iterations to perform * @return a two element array holding {a, b}. * @throws ConvergenceException if the algorithm fails to find a and b * satisfying the desired conditions * @throws FunctionEvaluationException if an error occurs evaluating the * function * @throws IllegalArgumentException if function is null, maximumIterations * is not positive, or initial is not between lowerBound and upperBound */ public static double[] bracket(UnivariateRealFunction function, double initial, double lowerBound, double upperBound, int maximumIterations) throws ConvergenceException, FunctionEvaluationException { if (function == null) { throw new NullArgumentException(LocalizedFormats.FUNCTION); } if (maximumIterations <= 0) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.INVALID_MAX_ITERATIONS, maximumIterations); } if (initial < lowerBound || initial > upperBound || lowerBound >= upperBound) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.INVALID_BRACKETING_PARAMETERS, lowerBound, initial, upperBound); } double a = initial; double b = initial; double fa; double fb; int numIterations = 0 ; do { a = FastMath.max(a - 1.0, lowerBound); b = FastMath.min(b + 1.0, upperBound); fa = function.value(a); fb = function.value(b); numIterations++ ; } while ((fa * fb > 0.0) && (numIterations < maximumIterations) && ((a > lowerBound) || (b < upperBound))); if (fa * fb > 0.0 ) { throw new ConvergenceException( LocalizedFormats.FAILED_BRACKETING, numIterations, maximumIterations, initial, lowerBound, upperBound, a, b, fa, fb); } return new double[]{a, b}; }
Example 16
Source File: Vector3D_s.java From coming with MIT License | 4 votes |
/** Get the L<sub>∞</sub> norm for the vector. * @return L<sub>∞</sub> norm for the vector */ public double getNormInf() { return FastMath.max(FastMath.max(FastMath.abs(x), FastMath.abs(y)), FastMath.abs(z)); }
Example 17
Source File: SecantSolver.java From astor with GNU General Public License v2.0 | 4 votes |
/** * Find a zero in the given interval. * @param f the function to solve * @param min the lower bound for the interval. * @param max the upper bound for the interval. * @return the value where the function is zero * @throws MaxIterationsExceededException if the maximum iteration count is exceeded * @throws FunctionEvaluationException if an error occurs evaluating the * function * @throws IllegalArgumentException if min is not less than max or the * signs of the values of the function at the endpoints are not opposites */ public double solve(final UnivariateRealFunction f, final double min, final double max) throws MaxIterationsExceededException, FunctionEvaluationException { clearResult(); verifyInterval(min, max); // Index 0 is the old approximation for the root. // Index 1 is the last calculated approximation for the root. // Index 2 is a bracket for the root with respect to x0. // OldDelta is the length of the bracketing interval of the last // iteration. double x0 = min; double x1 = max; double y0 = f.value(x0); double y1 = f.value(x1); // Verify bracketing if (y0 * y1 >= 0) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.SAME_SIGN_AT_ENDPOINTS, min, max, y0, y1); } double x2 = x0; double y2 = y0; double oldDelta = x2 - x1; int i = 0; while (i < maximalIterationCount) { if (FastMath.abs(y2) < FastMath.abs(y1)) { x0 = x1; x1 = x2; x2 = x0; y0 = y1; y1 = y2; y2 = y0; } if (FastMath.abs(y1) <= functionValueAccuracy) { setResult(x1, i); return result; } if (FastMath.abs(oldDelta) < FastMath.max(relativeAccuracy * FastMath.abs(x1), absoluteAccuracy)) { setResult(x1, i); return result; } double delta; if (FastMath.abs(y1) > FastMath.abs(y0)) { // Function value increased in last iteration. Force bisection. delta = 0.5 * oldDelta; } else { delta = (x0 - x1) / (1 - y0 / y1); if (delta / oldDelta > 1) { // New approximation falls outside bracket. // Fall back to bisection. delta = 0.5 * oldDelta; } } x0 = x1; y0 = y1; x1 = x1 + delta; y1 = f.value(x1); if ((y1 > 0) == (y2 > 0)) { // New bracket is (x0,x1). x2 = x0; y2 = y0; } oldDelta = x2 - x1; i++; } throw new MaxIterationsExceededException(maximalIterationCount); }
Example 18
Source File: BlockFieldMatrix.java From astor with GNU General Public License v2.0 | 4 votes |
/** {@inheritDoc} */ @Override public void setSubMatrix(final T[][] subMatrix, final int row, final int column) { // safety checks final int refLength = subMatrix[0].length; if (refLength == 0) { throw new NoDataException(LocalizedFormats.AT_LEAST_ONE_COLUMN); } final int endRow = row + subMatrix.length - 1; final int endColumn = column + refLength - 1; checkSubMatrixIndex(row, endRow, column, endColumn); for (final T[] subRow : subMatrix) { if (subRow.length != refLength) { throw new DimensionMismatchException(refLength, subRow.length); } } // compute blocks bounds final int blockStartRow = row / BLOCK_SIZE; final int blockEndRow = (endRow + BLOCK_SIZE) / BLOCK_SIZE; final int blockStartColumn = column / BLOCK_SIZE; final int blockEndColumn = (endColumn + BLOCK_SIZE) / BLOCK_SIZE; // perform copy block-wise, to ensure good cache behavior for (int iBlock = blockStartRow; iBlock < blockEndRow; ++iBlock) { final int iHeight = blockHeight(iBlock); final int firstRow = iBlock * BLOCK_SIZE; final int iStart = FastMath.max(row, firstRow); final int iEnd = FastMath.min(endRow + 1, firstRow + iHeight); for (int jBlock = blockStartColumn; jBlock < blockEndColumn; ++jBlock) { final int jWidth = blockWidth(jBlock); final int firstColumn = jBlock * BLOCK_SIZE; final int jStart = FastMath.max(column, firstColumn); final int jEnd = FastMath.min(endColumn + 1, firstColumn + jWidth); final int jLength = jEnd - jStart; // handle one block, row by row final T[] block = blocks[iBlock * blockColumns + jBlock]; for (int i = iStart; i < iEnd; ++i) { System.arraycopy(subMatrix[i - row], jStart - column, block, (i - firstRow) * jWidth + (jStart - firstColumn), jLength); } } } }
Example 19
Source File: SimpleScalarValueChecker.java From astor with GNU General Public License v2.0 | 3 votes |
/** * Check if the optimization algorithm has converged considering the * last two points. * This method may be called several time from the same algorithm * iteration with different points. This can be detected by checking the * iteration number at each call if needed. Each time this method is * called, the previous and current point correspond to points with the * same role at each iteration, so they can be compared. As an example, * simplex-based algorithms call this method for all points of the simplex, * not only for the best or worst ones. * * @param iteration Index of current iteration * @param previous Best point in the previous iteration. * @param current Best point in the current iteration. * @return {@code true} if the algorithm has converged. */ @Override public boolean converged(final int iteration, final RealPointValuePair previous, final RealPointValuePair current) { final double p = previous.getValue(); final double c = current.getValue(); final double difference = FastMath.abs(p - c); final double size = FastMath.max(FastMath.abs(p), FastMath.abs(c)); return difference <= size * getRelativeThreshold() || difference <= getAbsoluteThreshold(); }
Example 20
Source File: HypergeometricDistributionImpl.java From astor with GNU General Public License v2.0 | 2 votes |
/** * {@inheritDoc} * * For population size <code>N</code>, * number of successes <code>m</code>, and * sample size <code>n</code>, * the lower bound of the support is * <code>max(0, n + m - N)</code> * * @return lower bound of the support */ @Override public int getSupportLowerBound() { return FastMath.max(0, getSampleSize() + getNumberOfSuccesses() - getPopulationSize()); }