Java Code Examples for org.neuroph.core.data.DataSet#iterator()
The following examples show how to use
org.neuroph.core.data.DataSet#iterator() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: SimulatedAnnealingLearning.java From NeurophFramework with Apache License 2.0 | 6 votes |
/** * Used internally to calculate the error for a training set. * * @param trainingSet The training set to calculate for. * @return The error value. */ private double determineError(DataSet trainingSet) { double result = 0d; Iterator<DataSetRow> iterator = trainingSet.iterator(); while (iterator.hasNext() && !isStopped()) { DataSetRow trainingSetRow = iterator.next(); double[] input = trainingSetRow.getInput(); getNetwork().setInput(input); getNetwork().calculate(); double[] output = getNetwork().getOutput(); double[] desiredOutput = trainingSetRow .getDesiredOutput(); double[] patternError = getErrorFunction().addPatternError(desiredOutput, output); double sqrErrorSum = 0; for (double error : patternError) { sqrErrorSum += (error * error); } result += sqrErrorSum / (2 * patternError.length); } return result; }
Example 2
Source File: KohonenLearning.java From NeurophFramework with Apache License 2.0 | 6 votes |
@Override public void learn(DataSet trainingSet) { for (int phase = 0; phase < 2; phase++) { for (int k = 0; k < iterations[phase]; k++) { Iterator<DataSetRow> iterator = trainingSet.iterator(); while (iterator.hasNext() && !isStopped()) { DataSetRow trainingSetRow = iterator.next(); learnPattern(trainingSetRow, nR[phase]); } // while currentIteration = k; fireLearningEvent(new LearningEvent(this, LearningEvent.Type.EPOCH_ENDED)); if (isStopped()) return; } // for k learningRate = learningRate * 0.5; } // for phase }
Example 3
Source File: WekaNeurophSample.java From NeurophFramework with Apache License 2.0 | 6 votes |
/** * Prints Neuroph data set * * @param neurophDataset Dataset Neuroph data set */ public static void printDataSet(DataSet neurophDataset) { System.out.println("Neuroph dataset"); Iterator iterator = neurophDataset.iterator(); while (iterator.hasNext()) { DataSetRow row = (DataSetRow) iterator.next(); System.out.println("inputs"); System.out.println(Arrays.toString(row.getInput())); if (row.getDesiredOutput().length > 0) { System.out.println("outputs"); System.out.println(Arrays.toString(row.getDesiredOutput())); // System.out.println(row.getLabel()); } } }
Example 4
Source File: UnsupervisedLearning.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * This method does one learning epoch for the unsupervised learning rules. * It iterates through the training set and trains network weights for each * element * * @param trainingSet * training set for training network */ @Override public void doLearningEpoch(DataSet trainingSet) { Iterator<DataSetRow> iterator = trainingSet.iterator(); while (iterator.hasNext() && !isStopped()) { DataSetRow trainingSetRow = iterator.next(); learnPattern(trainingSetRow); } }
Example 5
Source File: JMLNeurophSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Prints Neuroph data set * * @param neurophDataset Dataset Neuroph data set */ public static void printDataset(DataSet neurophDataset) { System.out.println("Neuroph dataset"); Iterator iterator = neurophDataset.iterator(); while (iterator.hasNext()) { DataSetRow row = (DataSetRow) iterator.next(); System.out.println("inputs"); System.out.println(Arrays.toString(row.getInput())); if (row.getDesiredOutput().length > 0) { System.out.println("outputs"); System.out.println(Arrays.toString(row.getDesiredOutput())); } } }
Example 6
Source File: SupervisedLearning.java From NeurophFramework with Apache License 2.0 | 3 votes |
/** * This method implements basic logic for one learning epoch for the * supervised learning algorithms. Epoch is the one pass through the * training set. This method iterates through the training set * and trains network for each element. It also sets flag if conditions * to stop learning has been reached: network error below some allowed * value, or maximum iteration count * * @param trainingSet training set for training network */ @Override public void doLearningEpoch(DataSet trainingSet) { Iterator<DataSetRow> iterator = trainingSet.iterator(); while (iterator.hasNext() && !isStopped()) { // iterate all elements from training set - maybe remove isStopped from here DataSetRow dataSetRow = iterator.next(); learnPattern(dataSetRow); // learn current input/output pattern defined by SupervisedTrainingElement } }