Java Code Examples for org.neuroph.core.NeuralNetwork#createFromFile()
The following examples show how to use
org.neuroph.core.NeuralNetwork#createFromFile() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: ClassifierEvaluationSample.java From NeurophFramework with Apache License 2.0 | 6 votes |
public static void main(String[] args) { Evaluation evaluation = new Evaluation(); evaluation.addEvaluator(new ErrorEvaluator(new MeanSquaredError())); String[] classNames = {"Virginica", "Setosa", "Versicolor"}; MultiLayerPerceptron neuralNet = (MultiLayerPerceptron) NeuralNetwork.createFromFile("irisNet.nnet"); DataSet dataSet = DataSet.createFromFile("data_sets/iris_data_normalised.txt", 4, 3, ","); evaluation.addEvaluator(new ClassifierEvaluator.MultiClass(classNames)); evaluation.evaluate(neuralNet, dataSet); ClassifierEvaluator evaluator = evaluation.getEvaluator(ClassifierEvaluator.MultiClass.class); ConfusionMatrix confusionMatrix = evaluator.getResult(); System.out.println("Confusion matrrix:\r\n"); System.out.println(confusionMatrix.toString() + "\r\n\r\n"); System.out.println("Classification metrics\r\n"); ClassificationMetrics[] metrics = ClassificationMetrics.createFromMatrix(confusionMatrix); ClassificationMetrics.Stats average = ClassificationMetrics.average(metrics); for (ClassificationMetrics cm : metrics) { System.out.println(cm.toString() + "\r\n"); } System.out.println(average.toString()); }
Example 2
Source File: ImageRecognitionSample.java From NeurophFramework with Apache License 2.0 | 6 votes |
public static void main(String[] args) { // load trained neural network saved with NeurophStudio (specify existing neural network file here) NeuralNetwork nnet = NeuralNetwork.createFromFile("MyImageRecognition.nnet"); // get the image recognition plugin from neural network ImageRecognitionPlugin imageRecognition = (ImageRecognitionPlugin)nnet.getPlugin(ImageRecognitionPlugin.class); try { // image recognition is done here HashMap<String, Double> output = imageRecognition.recognizeImage(new File("someImage.jpg")); // specify some existing image file here System.out.println(output.toString()); } catch(IOException ioe) { System.out.println("Error: could not read file!"); } catch (VectorSizeMismatchException vsme) { System.out.println("Error: Image dimensions dont !"); } }
Example 3
Source File: RecognizeLetter.java From NeurophFramework with Apache License 2.0 | 5 votes |
public static void main(String[] args) throws IOException { // User input parameters //*********************************************************************************************************************************** String networkPath = "C:/Users/Mihailo/Desktop/OCR/nnet/nnet-12-0.01.nnet"; // path to the trained network * String letterPath = "C:/Users/Mihailo/Desktop/OCR/letters/259.png"; // path to the letter for recognition * //*********************************************************************************************************************************** NeuralNetwork nnet = NeuralNetwork.createFromFile(networkPath); ImageRecognitionPlugin imageRecognition = (ImageRecognitionPlugin) nnet.getPlugin(ImageRecognitionPlugin.class); Map<String, Double> output = imageRecognition.recognizeImage(new File(letterPath)); System.out.println("Recognized letter: "+OCRUtilities.getCharacter(output)); }
Example 4
Source File: TrainNetwork.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void train() { System.out.println("Training neural network... "); MultiLayerPerceptron neuralNet = (MultiLayerPerceptron) NeuralNetwork.createFromFile(config.getTrainedNetworkFileName()); DataSet dataSet = DataSet.load(config.getNormalizedBalancedFileName()); neuralNet.getLearningRule().addListener(this); neuralNet.learn(dataSet); System.out.println("Saving trained neural network to file... "); neuralNet.save(config.getTrainedNetworkFileName()); System.out.println("Neural network successfully saved!"); }
Example 5
Source File: Evaluate.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void evaluate() { System.out.println("Evaluating neural network..."); //Loading neural network from file MultiLayerPerceptron neuralNet = (MultiLayerPerceptron) NeuralNetwork.createFromFile(config.getTrainedNetworkFileName()); //Load normalized balanced data set from file DataSet dataSet = DataSet.load(config.getTestFileName()); //Testing neural network testNeuralNetwork(neuralNet, dataSet); }
Example 6
Source File: RunExampleEvaluation.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * @param args the command line arguments */ public static void main(String[] args) { NeuralNetwork nnet = NeuralNetwork.createFromFile("irisNet.nnet"); DataSet dataSet = DataSet.createFromFile("data_sets/iris_data_normalised.txt", 4, 3, ","); Evaluation.runFullEvaluation(nnet, dataSet); }
Example 7
Source File: OCRTextRecognition.java From NeurophFramework with Apache License 2.0 | 4 votes |
/** * @param networkPath path of the trained neural network */ public void setNetworkPath(String networkPath) { nnet = NeuralNetwork.createFromFile(networkPath); plugin = (ImageRecognitionPlugin) nnet.getPlugin(ImageRecognitionPlugin.class); }
Example 8
Source File: XorMultiLayerPerceptronSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
/** * Runs this sample */ public void run() { // create training set (logical XOR function) DataSet trainingSet = new DataSet(2, 1); trainingSet.add(new DataSetRow(new double[]{0, 0}, new double[]{0})); trainingSet.add(new DataSetRow(new double[]{0, 1}, new double[]{1})); trainingSet.add(new DataSetRow(new double[]{1, 0}, new double[]{1})); trainingSet.add(new DataSetRow(new double[]{1, 1}, new double[]{0})); // create multi layer perceptron MultiLayerPerceptron myMlPerceptron = new MultiLayerPerceptron(TransferFunctionType.SIGMOID, 2, 3, 1); myMlPerceptron.randomizeWeights(new WeightsRandomizer(new Random(123))); System.out.println(Arrays.toString(myMlPerceptron.getWeights())); myMlPerceptron.setLearningRule(new BackPropagation()); myMlPerceptron.getLearningRule().setLearningRate(0.5); // enable batch if using MomentumBackpropagation // if( myMlPerceptron.getLearningRule() instanceof MomentumBackpropagation ) // ((MomentumBackpropagation)myMlPerceptron.getLearningRule()).setBatchMode(false); LearningRule learningRule = myMlPerceptron.getLearningRule(); learningRule.addListener(this); // learn the training set System.out.println("Training neural network..."); myMlPerceptron.learn(trainingSet); // test perceptron System.out.println("Testing trained neural network"); testNeuralNetwork(myMlPerceptron, trainingSet); // save trained neural network myMlPerceptron.save("myMlPerceptron.nnet"); // load saved neural network NeuralNetwork loadedMlPerceptron = NeuralNetwork.createFromFile("myMlPerceptron.nnet"); // test loaded neural network System.out.println("Testing loaded neural network"); testNeuralNetwork(loadedMlPerceptron, trainingSet); }