Java Code Examples for org.neuroph.nnet.MultiLayerPerceptron#save()
The following examples show how to use
org.neuroph.nnet.MultiLayerPerceptron#save() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: TrainNetwork.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void train() { System.out.println("Training neural network... "); MultiLayerPerceptron neuralNet = (MultiLayerPerceptron) NeuralNetwork.createFromFile(config.getTrainedNetworkFileName()); DataSet dataSet = DataSet.load(config.getNormalizedBalancedFileName()); neuralNet.getLearningRule().addListener(this); neuralNet.learn(dataSet); System.out.println("Saving trained neural network to file... "); neuralNet.save(config.getTrainedNetworkFileName()); System.out.println("Neural network successfully saved!"); }
Example 2
Source File: PredictingTheReligionSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void run() { System.out.println("Creating training set..."); // get path to training set String dataSetFile = "data_sets/religion_data.txt"; int inputsCount = 54; int outputsCount = 5; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, "\t", false); System.out.println("Creating neural network..."); // create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 22, outputsCount); // attach listener to learning rule MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); // set learning rate and max error learningRule.setLearningRate(0.2); learningRule.setMaxError(0.01); System.out.println("Training network..."); // train the network with training set neuralNet.learn(dataSet); System.out.println("Training completed."); System.out.println("Testing network..."); testNeuralNetwork(neuralNet, dataSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("MyNeuralNetReligion.nnet"); System.out.println("Done."); }
Example 3
Source File: WineClassificationSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void run() { System.out.println("Creating training set..."); // get path to training set String dataSetFile = "data_sets/wine_classification_data.txt"; int inputsCount = 13; int outputsCount = 3; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, "\t", false); System.out.println("Creating neural network..."); // create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 22, outputsCount); // attach listener to learning rule MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); // set learning rate and max error learningRule.setLearningRate(0.2); learningRule.setMaxError(0.01); System.out.println("Training network..."); // train the network with training set neuralNet.learn(dataSet); System.out.println("Training completed."); System.out.println("Testing network..."); testNeuralNetwork(neuralNet, dataSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("MyNeuralNetWineClassification.nnet"); System.out.println("Done."); }
Example 4
Source File: GlassIdentificationSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void run() { System.out.println("Creating training set..."); String dataSetFile = "data_sets/glass_identification_data.txt"; int inputsCount = 9; int outputsCount = 7; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, "\t", false); //dataSet.normalize(); System.out.println("Creating neural network..."); // create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 22, outputsCount); // attach listener to learning rule MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); // set learning rate and max error learningRule.setLearningRate(0.1); learningRule.setMaxError(0.01); System.out.println("Training network..."); // train the network with training set neuralNet.learn(dataSet); System.out.println("Training completed."); System.out.println("Testing network..."); testNeuralNetwork(neuralNet, dataSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("MyNeuralGlassIdentification.nnet"); System.out.println("Done."); }
Example 5
Source File: AnimalsClassificationSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void run() { System.out.println("Creating training set..."); String dataSetFile = "data_sets/animals_data.txt"; int inputsCount = 20; int outputsCount = 7; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, "\t", true); System.out.println("Creating neural network..."); // create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 22, outputsCount); // attach listener to learning rule MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); // set learning rate and max error learningRule.setLearningRate(0.2); learningRule.setMaxError(0.01); System.out.println("Training network..."); // train the network with training set neuralNet.learn(dataSet); System.out.println("Training completed."); System.out.println("Testing network..."); testNeuralNetwork(neuralNet, dataSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("MyNeuralNetAnimals.nnet"); System.out.println("Done."); }
Example 6
Source File: CarEvaluationSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void run() { System.out.println("Creating training set..."); String dataSetFile = "data_sets/car_evaluation_data.txt"; int inputsCount = 21; int outputsCount = 4; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, "\t", false); System.out.println("Creating neural network..."); // create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 22, outputsCount); // attach listener to learning rule MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); // set learning rate and max error learningRule.setLearningRate(0.2); learningRule.setMaxError(0.01); System.out.println("Training network..."); // train the network with training set neuralNet.learn(dataSet); System.out.println("Training completed."); System.out.println("Testing network..."); testNeuralNetwork(neuralNet, dataSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("MyNeuralNetCarEvaluation.nnet"); System.out.println("Done."); }
Example 7
Source File: IrisClassificationSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Runs this sample */ public static void main(String[] args) { // get the path to file with data String inputFileName = "data_sets/iris_data_normalised.txt"; // create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(4, 16, 3); // create training set from file DataSet irisDataSet = DataSet.createFromFile(inputFileName, 4, 3, ","); // attach learningn listener to print out info about error at each iteration neuralNet.getLearningRule().addListener((event)->{ BackPropagation bp = (BackPropagation) event.getSource(); System.out.println("Current iteration: " + bp.getCurrentIteration()); System.out.println("Error: " + bp.getTotalNetworkError()); }); neuralNet.getLearningRule().setLearningRate(0.5); neuralNet.getLearningRule().setMaxError(0.01); neuralNet.getLearningRule().setMaxIterations(30000); // train the network with training set neuralNet.learn(irisDataSet); neuralNet.save("irisNet.nnet"); System.out.println("Done training."); System.out.println("Testing network..."); }
Example 8
Source File: Banknote.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating data set..."); String dataSetFile = "data_sets/ml10standard/databanknote.txt"; int inputsCount = 4; int outputsCount = 1; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ",", false); DataSet[] trainTestSplit = dataSet.split(0.6, 0.4); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; Normalizer norm = new MaxNormalizer(trainingSet); norm.normalize(trainingSet); norm.normalize(testSet); System.out.println("Creating neural network..."); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, inputsCount, 1, outputsCount); neuralNet.setLearningRule(new MomentumBackpropagation()); MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener((event) -> { MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }); // set learning rate and max error learningRule.setLearningRate(0.1); learningRule.setMaxError(0.01); System.out.println("Training network..."); // train the network with training set neuralNet.learn(trainingSet); System.out.println("Training completed."); System.out.println("Testing network..."); System.out.println("Network performance on the test set"); evaluate(neuralNet, testSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("nn1.nnet"); System.out.println("Done."); }
Example 9
Source File: BostonHousePrice.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating data set..."); String dataSetFile = "data_sets/ml10standard/bostonhouse.txt"; int inputsCount = 13; int outputsCount = 1; // create data set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ","); // split data into training and test set DataSet[] trainTestSplit = dataSet.split(0.6, 0.4); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; // normalize data Normalizer norm = new MaxNormalizer(trainingSet); norm.normalize(trainingSet); norm.normalize(testSet); System.out.println("Creating neural network..."); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, inputsCount, 2, 2, outputsCount); neuralNet.setLearningRule(new MomentumBackpropagation()); MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(event -> { MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }); System.out.println("Training network..."); // train the network with training set neuralNet.learn(trainingSet); System.out.println("Training completed."); System.out.println("Testing network..."); System.out.println("Network performance on the test set"); evaluate(neuralNet, testSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("nn1.nnet"); System.out.println("Done."); }
Example 10
Source File: IrisFlowers.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating training set..."); // get path to training set String trainingSetFileName = "data_sets/irisdatanormalised.txt"; int inputsCount = 4; int outputsCount = 3; // create training set from file DataSet dataSet = DataSet.createFromFile(trainingSetFileName, inputsCount, outputsCount, ","); // splid data into training and test set DataSet[] trainTestSplit = dataSet.split(0.6, 0.4); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; System.out.println("Creating neural network..."); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, inputsCount, 2, outputsCount); neuralNet.setLearningRule(new MomentumBackpropagation()); MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); // set learning rate and max error learningRule.setLearningRate(0.2); learningRule.setMaxError(0.03); System.out.println("Training network..."); // train the network with training set neuralNet.learn(trainingSet); System.out.println("Training completed."); System.out.println("Testing network..."); System.out.println("Network performance on the test set"); evaluate(neuralNet, testSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("nn1.nnet"); System.out.println("Done."); System.out.println(); System.out.println("Network outputs for test set"); testNeuralNetwork(neuralNet, testSet); }
Example 11
Source File: Sonar.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { String dataSetFile = "data_sets/ml10standard/sonardata.txt"; int numInputs = 60; int numOutputs = 1; // create data set from csv file DataSet dataSet = DataSet.createFromFile(dataSetFile, numInputs, numOutputs, ","); // split data into train and test set DataSet[] trainTestSplit = dataSet.split(0.6, 0.4); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; // create neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, numInputs, 35, 15, numOutputs); // set learning rule and add listener neuralNet.setLearningRule(new MomentumBackpropagation()); MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener((event) -> { MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }); // set learning rate and max error learningRule.setLearningRate(0.01); learningRule.setMaxError(0.01); // train the network with training set neuralNet.learn(trainingSet); // evaluate network performance on test set evaluate(neuralNet, testSet); // save neural network to file neuralNet.save("nn1.nnet"); System.out.println("Done."); //testNeuralNetwork(neuralNet, testSet); }
Example 12
Source File: WineQualityClassification.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating data set..."); String dataSetFile = "data_sets/ml10standard/wine.txt"; int inputsCount = 11; int outputsCount = 10; // create data set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, "\t", true); // split data into train and test set DataSet[] trainTestSplit = dataSet.split(0.6, 0.4); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; Normalizer norm = new MaxNormalizer(trainingSet); norm.normalize(trainingSet); norm.normalize(testSet); System.out.println("Creating neural network..."); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 20, 15, outputsCount); neuralNet.setLearningRule(new MomentumBackpropagation()); MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener((event)->{ MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }); // set learning rate and max error learningRule.setLearningRate(0.1); learningRule.setMaxIterations(5000); System.out.println("Training network..."); // train the network with training set neuralNet.learn(trainingSet); System.out.println("Training completed."); System.out.println("Testing network..."); System.out.println("Network performance on the test set"); evaluate(neuralNet, testSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("nn1.nnet"); System.out.println("Done."); System.out.println(); System.out.println("Network outputs for test set"); testNeuralNetwork(neuralNet, testSet); }
Example 13
Source File: WheatSeeds.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating data set..."); String dataSetFile = "data_sets/ml10standard/seeds.txt"; int inputsCount = 7; int outputsCount = 3; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, "\t"); // split data into train and test set DataSet[] trainTestSplit = dataSet.split(0.6, 0.4); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; System.out.println("Creating neural network..."); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 15, 2, outputsCount); neuralNet.setLearningRule(new MomentumBackpropagation()); MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener((event)->{ MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }); // set learning rate and max error learningRule.setLearningRate(0.1); learningRule.setMaxError(0.01); learningRule.setMaxIterations(5000); System.out.println("Training network..."); // train the network with training set neuralNet.learn(trainingSet); System.out.println("Training completed."); System.out.println("Testing network..."); System.out.println("Network performance on the test set"); evaluate(neuralNet, testSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("nn1.nnet"); System.out.println("Done."); System.out.println(); System.out.println("Network outputs for test set"); testNeuralNetwork(neuralNet, testSet); }
Example 14
Source File: Abalone.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating training set..."); // get path to training set String trainingSetFileName = "data_sets/abalonerings.txt"; int inputsCount = 8; int outputsCount = 29; // create training set from file DataSet dataSet = DataSet.createFromFile(trainingSetFileName, inputsCount, outputsCount, "\t", true); // split data into train and test set DataSet[] trainTestSplit = dataSet.split(0.6, 0.4); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; // normalize data Normalizer norm = new MaxNormalizer(trainingSet); norm.normalize(trainingSet); norm.normalize(testSet); System.out.println("Creating neural network..."); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 15, 10, outputsCount); neuralNet.setLearningRule(new MomentumBackpropagation()); MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); // set learning rate and max error learningRule.setLearningRate(0.1); learningRule.setMaxIterations(5000); System.out.println("Training network..."); // train the network with training set neuralNet.learn(trainingSet); System.out.println("Training completed."); System.out.println("Testing network..."); System.out.println("Network performance on the test set"); evaluate(neuralNet, testSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("nn1.nnet"); System.out.println("Done."); System.out.println(); System.out.println("Network outputs for test set"); testNeuralNetwork(neuralNet, testSet); }
Example 15
Source File: IrisFlowers.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating data set..."); String dataSetFile = "data_sets/ml10standard/irisdatanormalised.txt"; int inputsCount = 4; int outputsCount = 3; // create data set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ","); // split data into training and test set DataSet[] trainTestSplit = dataSet.split(0.6, 0.4); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; System.out.println("Creating neural network..."); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(TransferFunctionType.TANH, inputsCount, 2, outputsCount); neuralNet.setLearningRule(new MomentumBackpropagation()); MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener((event)->{ MomentumBackpropagation bp = (MomentumBackpropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }); // set learning rate and max error learningRule.setLearningRate(0.2); learningRule.setMaxError(0.03); System.out.println("Training network..."); // train the network with training set neuralNet.learn(trainingSet); System.out.println("Training completed."); System.out.println("Testing network..."); System.out.println("Network performance on the test set"); evaluate(neuralNet, testSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("nn1.nnet"); System.out.println("Done."); }
Example 16
Source File: ConceptLearningAndClassificationSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating training set..."); String dataSetFile = "data_sets/concept_learning_and_classification_data_1.txt"; int inputsCount = 15; int outputsCount = 3; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ",", false); //dataSet.normalize(); System.out.println("Creating neural network..."); // create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 10, outputsCount); // attach listener to learning rule MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); // set learning rate and max error learningRule.setLearningRate(0.2); learningRule.setMomentum(0.7); learningRule.setMaxError(0.01); System.out.println("Training network..."); // train the network with training set neuralNet.learn(dataSet); System.out.println("Training completed."); System.out.println("Testing network..."); testNeuralNetwork(neuralNet, dataSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("MyNeuralNetConceptLearning.nnet"); System.out.println("Done."); }
Example 17
Source File: Sonar.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating training set..."); // get path to training set String trainingSetFileName = "data_sets/sonardata.txt"; int inputsCount = 60; int outputsCount = 1; // create training set from file DataSet dataSet = DataSet.createFromFile(trainingSetFileName, inputsCount, outputsCount, ",", false); // split data into train and test set DataSet[] trainTestSplit = dataSet.split(0.6, 0.4); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; // normalize data using max normalization Normalizer norm = new MaxNormalizer(trainingSet); norm.normalize(trainingSet); norm.normalize(testSet); System.out.println("Creating neural network..."); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 15, 10, outputsCount); neuralNet.setLearningRule(new MomentumBackpropagation()); MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); // set learning rate and max error learningRule.setLearningRate(0.1); learningRule.setMaxError(0.01); System.out.println("Training network..."); // train the network with training set neuralNet.learn(trainingSet); System.out.println("Training completed."); System.out.println("Testing network..."); System.out.println("Network performance on the test set"); evaluate(neuralNet, testSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("nn1.nnet"); System.out.println("Done."); System.out.println(); System.out.println("Network outputs for test set"); testNeuralNetwork(neuralNet, testSet); }
Example 18
Source File: Ionosphere.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating training set..."); // get path to training set String trainingSetFileName = "data_sets/ionospheredata.txt"; int inputsCount = 34; int outputsCount = 1; // create training set from file DataSet dataSet = DataSet.createFromFile(trainingSetFileName, inputsCount, outputsCount, ",", false); // split data into training and test set DataSet[] trainTestSplit = dataSet.split(0.6, 0.4); DataSet trainingSet = trainTestSplit[0]; DataSet testSet = trainTestSplit[1]; // normalize data Normalizer norm = new MaxNormalizer(trainingSet); norm.normalize(trainingSet); norm.normalize(testSet); System.out.println("Creating neural network..."); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 30, 25, outputsCount); neuralNet.setLearningRule(new MomentumBackpropagation()); MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); // set learning rate and max error learningRule.setLearningRate(0.1); learningRule.setMaxError(0.01); System.out.println("Training network..."); // train the network with training set neuralNet.learn(trainingSet); System.out.println("Training completed."); System.out.println("Testing network..."); System.out.println("Network performance on the test set"); evaluate(neuralNet, testSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("nn1.nnet"); System.out.println("Done."); System.out.println(); System.out.println("Network outputs for test set"); testNeuralNetwork(neuralNet, testSet); }
Example 19
Source File: ForestFiresSample.java From NeurophFramework with Apache License 2.0 | 3 votes |
public void run() { System.out.println("Creating training set..."); String dataSetFile = "data_sets/forest_fires_data.txt"; int inputsCount = 29; int outputsCount = 1; // create training set from file DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ",", false); System.out.println("Creating neural network..."); // create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 25, outputsCount); // attach listener to learning rule MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); // set learning rate and max error learningRule.setLearningRate(0.2); learningRule.setMaxError(0.01); System.out.println("Training network..."); // train the network with training set neuralNet.learn(dataSet); System.out.println("Training completed."); System.out.println("Testing network..."); testNeuralNetwork(neuralNet, dataSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("MyNeuralNetForestFires.nnet"); System.out.println("Done."); }
Example 20
Source File: LensesClassificationSample.java From NeurophFramework with Apache License 2.0 | 3 votes |
public void run() { System.out.println("Creating training set..."); String dataSetFile = "data_sets/lenses_data.txt"; int inputsCount = 9; int outputsCount = 3; System.out.println("Creating training set..."); DataSet dataSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, " ", false); System.out.println("Creating neural network..."); // create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 16, outputsCount); // attach listener to learning rule MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener(this); // set learning rate and max error learningRule.setLearningRate(0.2); learningRule.setMaxError(0.01); System.out.println("Training network..."); // train the network with training set neuralNet.learn(dataSet); System.out.println("Training completed."); System.out.println("Testing network..."); testNeuralNetwork(neuralNet, dataSet); System.out.println("Saving network"); // save neural network to file neuralNet.save("MyNeuralNetLenses.nnet"); System.out.println("Done."); }