net.sf.javaml.core.Dataset Java Examples
The following examples show how to use
net.sf.javaml.core.Dataset.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: KMeans2.java From HMMRATAC with GNU General Public License v3.0 | 6 votes |
public void makeClusteredList3Signals(Dataset[] clusters,HashMap<Integer,MatrixNodeForKMeans> map){ clusterList = new ArrayList<ATACClusterNode>(); ATACClusterNode temp = null; covMat = new ArrayList<double[][]>(); for (int i = 0; i < clusters.length;i++){ Dataset cluster = clusters[i]; StorelessCovariance cov = new StorelessCovariance(3); for (int x = 0; x< cluster.size();x++){ Instance ins = cluster.get(x); MatrixNodeForKMeans node = map.get(ins.getID()); temp = new ATACClusterNode(node.getChrom(),node.getPos(),node.getEnrich1(),node.getEnrich2(), node.getEnrich3(),node.getIndex(),i); clusterList.add(temp); double[] row1 = new double[3]; row1[0] = node.getEnrich1(); row1[1] = node.getEnrich2(); row1[2] = node.getEnrich3(); cov.increment(row1); } double[][] covM = cov.getCovarianceMatrix().getData(); covMat.add(covM); } clusters = null; map = null; Collections.sort(clusterList,ATACClusterNode.positionComparator); }
Example #2
Source File: KMeans2.java From HMMRATAC with GNU General Public License v3.0 | 6 votes |
public void makeClusteredList2Signals(Dataset[] clusters,HashMap<Integer,MatrixNodeForKMeans> map){ clusterList = new ArrayList<ATACClusterNode>(); ATACClusterNode temp = null; covMat = new ArrayList<double[][]>(); for (int i = 0; i < clusters.length;i++){ Dataset cluster = clusters[i]; StorelessCovariance cov = new StorelessCovariance(2); for (int x = 0; x< cluster.size();x++){ Instance ins = cluster.get(x); MatrixNodeForKMeans node = map.get(ins.getID()); temp = new ATACClusterNode(node.getChrom(),node.getPos(),node.getEnrich1(),node.getEnrich2(), node.getEnrich3(),node.getIndex(),i); clusterList.add(temp); double[] row1 = new double[2]; row1[0] = node.getEnrich1(); row1[1] = node.getEnrich2(); cov.increment(row1); } double[][] covM = cov.getCovarianceMatrix().getData(); covMat.add(covM); } clusters = null; map = null; Collections.sort(clusterList,ATACClusterNode.positionComparator); }
Example #3
Source File: JMLNeurophSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
public static void main(String[] args) { try { //create jml dataset Dataset jmlDataset = FileHandler.loadDataset(new File("datasets/iris.data"), 4, ","); // normalize dataset NormalizeMidrange nmr=new NormalizeMidrange(0,1); nmr.build(jmlDataset); nmr.filter(jmlDataset); //print data as read from file System.out.println(jmlDataset); //convert jml dataset to neuroph DataSet neurophDataset = JMLDataSetConverter.convertJMLToNeurophDataset(jmlDataset, 4, 3); //convert neuroph dataset to jml Dataset jml = JMLDataSetConverter.convertNeurophToJMLDataset(neurophDataset); //print out both to compare them System.out.println("Java-ML data set read from file"); printDataset(jmlDataset); System.out.println("Neuroph data set converted from Java-ML data set"); printDataset(neurophDataset); System.out.println("Java-ML data set reconverted from Neuroph data set"); printDataset(jml); System.out.println("JMLNeuroph classifier test"); //test NeurophJMLClassifier testJMLNeurophClassifier(jmlDataset); } catch (Exception ex) { Logger.getLogger(JMLNeurophSample.class.getName()).log(Level.SEVERE, null, ex); } }
Example #4
Source File: JMLNeurophSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Prints Java-ML data set * * @param jmlDataset Dataset Java-ML data set */ public static void printDataset(Dataset jmlDataset) { System.out.println("JML dataset"); Iterator iterator = jmlDataset.iterator(); while (iterator.hasNext()) { Instance instance = (Instance) iterator.next(); System.out.println("inputs"); System.out.println(instance.values()); System.out.println(instance.classValue()); } }
Example #5
Source File: JMLNeurophSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Converts Java-ML data set to Map * * @param jmlDataset Dataset Java-ML data set * @return Map converted from Java-ML data set */ private static Map<double[], String> convertJMLDatasetToMap(Dataset jmlDataset) { //number of attributes without class attribute int numOfAttributes = jmlDataset.noAttributes(); //initialize map Map<double[], String> itemClassMap = new HashMap<double[], String>(); //iterate through jml dataset for (Instance dataRow : jmlDataset) { //initialize double array for values from dataset double[] values = new double[numOfAttributes]; int ind = 0; //iterate through values in dataset instance an adding them in double array for (Double val : dataRow) { values[ind] = val; ind++; } //put attribute values and class value in map itemClassMap.put(values, dataRow.classValue().toString()); } return itemClassMap; }
Example #6
Source File: JMLNeurophSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Test JMLNeurophClassifier * * @param jmlDataset Dataset Java-ML data set */ private static void testJMLNeurophClassifier(Dataset jmlDataset) { MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(4, 16, 3); // set labels for output neurons neuralNet.getOutputNeurons().get(0).setLabel("Setosa"); neuralNet.getOutputNeurons().get(1).setLabel("Versicolor"); neuralNet.getOutputNeurons().get(2).setLabel("Virginica"); // initialize NeurophJMLClassifier JMLNeurophClassifier jmlnClassifier = new JMLNeurophClassifier(neuralNet); // Process Java-ML data set jmlnClassifier.buildClassifier(jmlDataset); // test item //double[] item = {5.1, 3.5, 1.4, 0.2}; // normalized item is below double[] item = {-0.27777777777777773, 0.1249999999999999, -0.4322033898305085, -0.45833333333333337}; // Java-ML instance out of test item Instance instance = new DenseInstance(item); // why are these not normalised? System.out.println("NeurophJMLClassifier - classify of {0.22222222222222213, 0.6249999999999999, 0.06779661016949151, 0.04166666666666667}"); System.out.println(jmlnClassifier.classify(instance)); System.out.println("NeurophJMLClassifier - classDistribution of {0.22222222222222213, 0.6249999999999999, 0.06779661016949151, 0.04166666666666667}"); System.out.println(jmlnClassifier.classDistribution(instance)); }
Example #7
Source File: JavaMLClusterers.java From apogen with Apache License 2.0 | 5 votes |
public static LinkedHashMap<Integer, LinkedList<String>> runKmedoid(String filename, String numClusters, boolean distance) throws IOException { LinkedHashMap<Integer, LinkedList<String>> output = null; Clusterer c = new KMedoids(Integer.parseInt(numClusters), 500, new EuclideanDistance()); // if (distance) { //// c = new KMedoidsDistance(Integer.parseInt(numClusters), 500, //// new EuclideanDistance()); // c = new KMedoids(Integer.parseInt(numClusters), 500, new // EuclideanDistance()); // } else { // c = new KMedoids(Integer.parseInt(numClusters), 500, // new EuclideanDistance()); // } Dataset data = FileHandler.loadDataset(new File(filename), 0, ","); Dataset[] clusters = c.cluster(data); output = convert(clusters); return output; }
Example #8
Source File: KMeans2.java From HMMRATAC with GNU General Public License v3.0 | 5 votes |
public KMeans2(Dataset DATA,int K,int iter){ data = DATA; k=K; numIter = iter; kmeans = new KMeans(k,numIter); //kmeans.setUniformInitialCentroids(); }
Example #9
Source File: TrackHolder.java From HMMRATAC with GNU General Public License v3.0 | 5 votes |
/** * Access the data as a Dataset, for kmeans * @return a Dataset representing the data for kmeans and javaml applications */ public Dataset getDataSet(){ Dataset data = new DefaultDataset(); for (int i = 0;i < tracks.size();i++){ DenseInstance ins = new DenseInstance(tracks.get(i)); //for (int a = 0;a < tracks.get(i).length;a++){ //System.out.println(tracks.get(i)[a]); //} data.add(ins); } return data; }
Example #10
Source File: WordFrequency.java From apogen with Apache License 2.0 | 4 votes |
/** * create the dataset for thal frequencies * * @return */ public Dataset createDatasetThal() { for (String k : wordsThalFrequenciesMap.keySet()) { Collection<BigDecimal> v = wordsThalFrequenciesMap.get(k).values(); double[] features = new double[v.size()]; int count = 0; for (BigDecimal bd : v) { features[count] = bd.doubleValue(); count++; } Instance instance = new DenseInstance(features, k); dataThal.add(instance); } return dataThal; }
Example #11
Source File: KMeans2.java From HMMRATAC with GNU General Public License v3.0 | 4 votes |
public KMeans2(Dataset DATA,int K){ data = DATA; k=K; kmeans = new KMeans(k); }
Example #12
Source File: KMeans2.java From HMMRATAC with GNU General Public License v3.0 | 4 votes |
public KMeans2(Dataset DATA){ data = DATA; kmeans = new KMeans(); }
Example #13
Source File: TagFrequency.java From apogen with Apache License 2.0 | 4 votes |
/** * exports the tags frequencies map in a Java-ML Dataset * * @return */ public Dataset createDataset() { for (String k : tagsFrequenciesMap.keySet()) { Collection<BigDecimal> v = tagsFrequenciesMap.get(k).values(); double[] features = new double[v.size()]; int count = 0; for (BigDecimal bd : v) { features[count] = bd.doubleValue(); count++; } Instance instance = new DenseInstance(features, k); data.add(instance); } return data; }
Example #14
Source File: JMLNeurophClassifier.java From NeurophFramework with Apache License 2.0 | 4 votes |
/** * Neural network learns from Java-ML data set * @param dataSetJML Dataset Java-ML data set */ @Override public void buildClassifier(Dataset dataSetJML) { DataSet dataSet = JMLDataSetConverter.convertJMLToNeurophDataset(dataSetJML, neuralNet.getInputsCount(), neuralNet.getOutputsCount()); neuralNet.learn(dataSet); }
Example #15
Source File: WordFrequency.java From apogen with Apache License 2.0 | 4 votes |
/** * create the dataset for body frequencies * * @return */ public Dataset createDatasetBody() { for (String k : wordsBodyFrequenciesMap.keySet()) { Collection<BigDecimal> v = wordsBodyFrequenciesMap.get(k).values(); double[] features = new double[v.size()]; int count = 0; for (BigDecimal bd : v) { features[count] = bd.doubleValue(); count++; } Instance instance = new DenseInstance(features, k); dataBody.add(instance); } return dataBody; }
Example #16
Source File: JavaMLClusterers.java From apogen with Apache License 2.0 | 4 votes |
public static LinkedHashMap<Integer, LinkedList<String>> convert(Dataset[] clusters) { LinkedHashMap<Integer, LinkedList<String>> output = new LinkedHashMap<Integer, LinkedList<String>>(); for (int i = 0; i < clusters.length; i++) { LinkedList<String> list = new LinkedList<String>(); for (int j = 0; j < clusters[i].size(); j++) { // System.out.println("\t" + clusters[i].classValue(j)); list.add("" + clusters[i].classValue(j)); } output.put(new Integer(i), list); } return output; }
Example #17
Source File: UrlDistance.java From apogen with Apache License 2.0 | 4 votes |
/** * create the URL distances matrix * * @return */ public Dataset createDataset() { for (String k : urlDistancesMap.keySet()) { Collection<BigDecimal> v = urlDistancesMap.get(k).values(); double[] features = new double[v.size()]; int count = 0; for (BigDecimal bd : v) { features[count] = bd.doubleValue(); count++; } Instance instance = new DenseInstance(features, k); data.add(instance); } return data; }
Example #18
Source File: DomDistance.java From apogen with Apache License 2.0 | 4 votes |
public Dataset createDataset() { for (String k : domDistancesMap.keySet()) { Collection<BigDecimal> v = domDistancesMap.get(k).values(); double[] features = new double[v.size()]; int count = 0; for (BigDecimal bd : v) { features[count] = bd.doubleValue(); count++; } Instance instance = new DenseInstance(features, k); data.add(instance); } return data; }
Example #19
Source File: KMeansToHMM.java From HMMRATAC with GNU General Public License v3.0 | 3 votes |
/** * Constructor for creating new KMeansToHMM object * @param d a Dataset containing the data * @param K an integer representing the number of states to cluster * @param numIter an integer representing the number of iterations for kmeans clustering * @param diag a boolean to determine whether the resulting covariance matrix should be diagonal * @param equal a boolean to determine whether the initial probability vector should be equal * @param equal2 a boolean to determine whether the transition probability matrix should be equal */ @SuppressWarnings("unchecked") public KMeansToHMM(Dataset d,int K,int numIter,boolean diag,boolean equal,boolean equal2){ build(d,K,numIter, diag, equal,equal2); sort((Hmm<ObservationVector>) hmm); }
Example #20
Source File: KMeans2.java From HMMRATAC with GNU General Public License v3.0 | 2 votes |
public Dataset[] cluster(){ clusteredData = kmeans.cluster(data); return clusteredData; }