Java Code Examples for org.nd4j.common.primitives.Pair#of()
The following examples show how to use
org.nd4j.common.primitives.Pair#of() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: BaseJsonArrayConverter.java From konduit-serving with Apache License 2.0 | 6 votes |
protected Pair<Map<Integer, Integer>, List<? extends Map<FieldName, ?>>> doTransformProcessConvertPmmlWithErrors(Schema schema, JsonArray jsonArray, TransformProcess transformProcess, DataPipelineErrorHandler dataPipelineErrorHandler) { Schema outputSchema = transformProcess.getFinalSchema(); if (!transformProcess.getInitialSchema().equals(schema)) { throw new IllegalArgumentException("Transform process specified, but does not match target input inputSchema"); } List<Map<FieldName, Object>> ret = new ArrayList<>(jsonArray.size()); List<FieldName> fieldNames = getNameRepresentationFor(outputSchema); Pair<Map<Integer, Integer>, ArrowWritableRecordBatch> convertWithErrors = convertWithErrors(schema, jsonArray, transformProcess, dataPipelineErrorHandler); ArrowWritableRecordBatch conversion = convertWithErrors.getRight(); for (int i = 0; i < conversion.size(); i++) { List<Writable> recordToMap = conversion.get(i); Map<FieldName, Object> record = new LinkedHashMap(); for (int j = 0; j < outputSchema.numColumns(); j++) { record.put(fieldNames.get(j), WritableValueRetriever.getUnderlyingValue(recordToMap.get(j))); } ret.add(record); } return Pair.of(convertWithErrors.getKey(), ret); }
Example 2
Source File: GraphRunner.java From deeplearning4j with Apache License 2.0 | 6 votes |
private static GraphRunner getRunner(TensorDataType from,TensorDataType to) { Pair<TensorDataType,TensorDataType> key = Pair.of(from,to); if(!recastGraphDefs.containsKey(key)) { byte[] graphForDataType = graphForDataType(from,to); GraphRunner graphRunner = GraphRunner.builder() .graphBytes(graphForDataType) .inputNames(Arrays.asList("input")) .outputNames(Arrays.asList("cast_output")) .build(); recastGraphDefs.put(key,graphRunner); return graphRunner; } return recastGraphDefs.get(key); }
Example 3
Source File: ArrowUtils.java From konduit-serving with Apache License 2.0 | 6 votes |
public static Pair<Schema, ArrowWritableRecordBatch> readFromFile(FileInputStream input) throws IOException { BufferAllocator allocator = new RootAllocator(9223372036854775807L); Schema retSchema = null; ArrowWritableRecordBatch ret = null; SeekableReadChannel channel = new SeekableReadChannel(input.getChannel()); ArrowFileReader reader = new ArrowFileReader(channel, allocator); reader.loadNextBatch(); retSchema = toDatavecSchema(reader.getVectorSchemaRoot().getSchema()); VectorUnloader unloader = new VectorUnloader(reader.getVectorSchemaRoot()); VectorLoader vectorLoader = new VectorLoader(reader.getVectorSchemaRoot()); ArrowRecordBatch recordBatch = unloader.getRecordBatch(); vectorLoader.load(recordBatch); ret = asDataVecBatch(recordBatch, retSchema, reader.getVectorSchemaRoot()); ret.setUnloader(unloader); return Pair.of(retSchema, ret); }
Example 4
Source File: ArrowUtils.java From konduit-serving with Apache License 2.0 | 6 votes |
public static Pair<Schema, ArrowWritableRecordBatch> readFromBytes(byte[] input) throws IOException { BufferAllocator allocator = new RootAllocator(9223372036854775807L); Schema retSchema = null; ArrowWritableRecordBatch ret = null; SeekableReadChannel channel = new SeekableReadChannel(new ByteArrayReadableSeekableByteChannel(input)); ArrowFileReader reader = new ArrowFileReader(channel, allocator); reader.loadNextBatch(); retSchema = toDatavecSchema(reader.getVectorSchemaRoot().getSchema()); VectorUnloader unloader = new VectorUnloader(reader.getVectorSchemaRoot()); VectorLoader vectorLoader = new VectorLoader(reader.getVectorSchemaRoot()); ArrowRecordBatch recordBatch = unloader.getRecordBatch(); vectorLoader.load(recordBatch); ret = asDataVecBatch(recordBatch, retSchema, reader.getVectorSchemaRoot()); ret.setUnloader(unloader); return Pair.of(retSchema, ret); }
Example 5
Source File: ArrowConverter.java From deeplearning4j with Apache License 2.0 | 6 votes |
/** * Read a datavec schema and record set * from the given arrow file. * @param input the input to read * @return the associated datavec schema and record */ public static Pair<Schema,ArrowWritableRecordBatch> readFromFile(FileInputStream input) throws IOException { BufferAllocator allocator = new RootAllocator(Long.MAX_VALUE); Schema retSchema = null; ArrowWritableRecordBatch ret = null; SeekableReadChannel channel = new SeekableReadChannel(input.getChannel()); ArrowFileReader reader = new ArrowFileReader(channel, allocator); reader.loadNextBatch(); retSchema = toDatavecSchema(reader.getVectorSchemaRoot().getSchema()); //load the batch VectorUnloader unloader = new VectorUnloader(reader.getVectorSchemaRoot()); VectorLoader vectorLoader = new VectorLoader(reader.getVectorSchemaRoot()); ArrowRecordBatch recordBatch = unloader.getRecordBatch(); vectorLoader.load(recordBatch); ret = asDataVecBatch(recordBatch,retSchema,reader.getVectorSchemaRoot()); ret.setUnloader(unloader); return Pair.of(retSchema,ret); }
Example 6
Source File: MapToPairForReducerFunction.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Override public Pair<String, List<Writable>> apply(List<Writable> writables) { List<String> keyColumns = reducer.getKeyColumns(); if(keyColumns == null){ //Global reduction return Pair.of(GLOBAL_KEY, writables); } else { Schema schema = reducer.getInputSchema(); String key; if (keyColumns.size() == 1) key = writables.get(schema.getIndexOfColumn(keyColumns.get(0))).toString(); else { StringBuilder sb = new StringBuilder(); for (int i = 0; i < keyColumns.size(); i++) { if (i > 0) sb.append("_"); sb.append(writables.get(schema.getIndexOfColumn(keyColumns.get(i))).toString()); } key = sb.toString(); } return Pair.of(key, writables); } }
Example 7
Source File: KDTree.java From deeplearning4j with Apache License 2.0 | 5 votes |
private Pair<KDNode, Integer> max(KDNode node, int disc, int _disc) { int discNext = (_disc + 1) % dims; if (_disc == disc) { KDNode child = node.getLeft(); if (child != null) { return max(child, disc, discNext); } } else if (node.getLeft() != null || node.getRight() != null) { Pair<KDNode, Integer> left = null, right = null; if (node.getLeft() != null) left = max(node.getLeft(), disc, discNext); if (node.getRight() != null) right = max(node.getRight(), disc, discNext); if (left != null && right != null) { double pointLeft = left.getKey().getPoint().getDouble(disc); double pointRight = right.getKey().getPoint().getDouble(disc); if (pointLeft > pointRight) return left; else return right; } else if (left != null) return left; else return right; } return Pair.of(node, _disc); }
Example 8
Source File: AttentionVertex.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public Pair<INDArray, MaskState> feedForwardMaskArrays(INDArray[] maskArrays, MaskState currentMaskState, int minibatchSize) { if(maskArrays != null) { if(maskArrays[0] == null) { // Queries are unmasked, we don't need to pass on any mask return null; }else{ // Queries are masked, keep the masking going return Pair.of(maskArrays[0], currentMaskState); } }else { return Pair.of(null, currentMaskState); } }
Example 9
Source File: FilesAsBytesFunction.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public Pair<Text, BytesWritable> apply(Pair<String, InputStream> in) { try { return Pair.of(new Text(in.getFirst()), new BytesWritable(IOUtils.toByteArray(in.getSecond()))); } catch (IOException e) { throw new IllegalStateException(e); } }
Example 10
Source File: LocalMapToPairByMultipleColumnsFunction.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public Pair<List<Writable>, List<Writable>> apply(List<Writable> writables) { List<Writable> keyOut = new ArrayList<>(keyColumnIdxs.length); for (int keyColumnIdx : keyColumnIdxs) { keyOut.add(writables.get(keyColumnIdx)); } return Pair.of(keyOut, writables); }
Example 11
Source File: ExtractKeysFunction.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public Pair<List<Writable>, List<Writable>> apply(List<Writable> writables) { List<Writable> keyValues; if (columnIndexes.length == 1) { keyValues = Collections.singletonList(writables.get(columnIndexes[0])); } else { keyValues = new ArrayList<>(columnIndexes.length); for (int i : columnIndexes) { keyValues.add(writables.get(i)); } } return Pair.of(keyValues, writables); }
Example 12
Source File: ArrowConverterTest.java From deeplearning4j with Apache License 2.0 | 5 votes |
private Pair<Schema,List<List<Writable>>> recordToWrite() { List<List<Writable>> records = new ArrayList<>(); records.add(Arrays.<Writable>asList(new DoubleWritable(0.0),new DoubleWritable(0.0))); records.add(Arrays.<Writable>asList(new DoubleWritable(0.0),new DoubleWritable(0.0))); Schema.Builder schemaBuilder = new Schema.Builder(); for(int i = 0; i < 2; i++) { schemaBuilder.addColumnFloat("col-" + i); } return Pair.of(schemaBuilder.build(),records); }
Example 13
Source File: KDTree.java From deeplearning4j with Apache License 2.0 | 5 votes |
private Pair<KDNode, Integer> min(KDNode node, int disc, int _disc) { int discNext = (_disc + 1) % dims; if (_disc == disc) { KDNode child = node.getLeft(); if (child != null) { return min(child, disc, discNext); } } else if (node.getLeft() != null || node.getRight() != null) { Pair<KDNode, Integer> left = null, right = null; if (node.getLeft() != null) left = min(node.getLeft(), disc, discNext); if (node.getRight() != null) right = min(node.getRight(), disc, discNext); if (left != null && right != null) { double pointLeft = left.getKey().getPoint().getDouble(disc); double pointRight = right.getKey().getPoint().getDouble(disc); if (pointLeft < pointRight) return left; else return right; } else if (left != null) return left; else return right; } return Pair.of(node, _disc); }
Example 14
Source File: MetricsUtils.java From konduit-serving with Apache License 2.0 | 5 votes |
/** * Sets up promethues and returns the * registry * @return */ public static Pair<MicrometerMetricsOptions,MeterRegistry> setupPrometheus() { PrometheusMeterRegistry registry = new PrometheusMeterRegistry(PrometheusConfig.DEFAULT); MicrometerMetricsOptions micrometerMetricsOptions = new MicrometerMetricsOptions() .setMicrometerRegistry(registry) .setPrometheusOptions(new VertxPrometheusOptions() .setEnabled(true)); BackendRegistries.setupBackend(micrometerMetricsOptions); return Pair.of(micrometerMetricsOptions,registry); }
Example 15
Source File: JsonArrayMapConverter.java From konduit-serving with Apache License 2.0 | 5 votes |
/** * {@inheritDoc} */ @Override public Pair<Map<Integer, Integer>, List<? extends Map<FieldName, ?>>> convertPmmlWithErrors(Schema schema, JsonArray jsonArray, TransformProcess transformProcess, DataPipelineErrorHandler dataPipelineErrorHandler) { if (transformProcess != null) { return doTransformProcessConvertPmmlWithErrors(schema, jsonArray, transformProcess, dataPipelineErrorHandler); } List<FieldName> fieldNames = getNameRepresentationFor(schema); List<Map<FieldName, Object>> ret = new ArrayList<>(jsonArray.size()); Map<Integer, Integer> mapping = new LinkedHashMap<>(); int numSucceeded = 0; for (int i = 0; i < jsonArray.size(); i++) { try { JsonObject jsonObject = jsonArray.getJsonObject(i); if (jsonObject.size() != schema.numColumns()) { throw new IllegalArgumentException("Found illegal item at row " + i); } Map<FieldName, Object> record = new LinkedHashMap(); for (int j = 0; j < schema.numColumns(); j++) { record.put(fieldNames.get(j), jsonObject.getValue(schema.getName(j))); } mapping.put(numSucceeded, i); numSucceeded++; ret.add(record); } catch (Exception e) { dataPipelineErrorHandler.onError(e, jsonArray.getJsonObject(i), i); } } return Pair.of(mapping, ret); }
Example 16
Source File: BatchInputParser.java From konduit-serving with Apache License 2.0 | 5 votes |
private Pair<String, Integer> partNameAndIndex(String name) { //inputName[partIndex] //1 part only if (name.indexOf('[') < 0) { return Pair.of(name, 0); } String outputName = name.substring(0, name.indexOf('[')); int partIndex = Integer.parseInt(name.substring(name.indexOf('[') + 1, name.lastIndexOf(']'))); return Pair.of(outputName, partIndex); }
Example 17
Source File: ColumnToKeyPairTransform.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Override public Pair<Writable, Long> apply(List<Writable> list) { return Pair.of(list.get(columnIndex), 1L); }
Example 18
Source File: ColumnAsKeyPairFunction.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Override public Pair<Writable, List<Writable>> apply(List<Writable> writables) { return Pair.of(writables.get(columnIdx), writables); }
Example 19
Source File: LocalMapToPairByColumnFunction.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Override public Pair<Writable, List<Writable>> apply(List<Writable> writables) { return Pair.of(writables.get(keyColumnIdx), writables); }
Example 20
Source File: CropGridRunner.java From konduit-serving with Apache License 2.0 | 4 votes |
protected Pair<List<Image>, List<BoundingBox>> cropGrid(Mat m, List<Point> pxPoints, double gx, double gy) { Point tl = pxPoints.get(0); Point tr = pxPoints.get(1); Point bl = pxPoints.get(2); Point br = pxPoints.get(3); List<Image> out = new ArrayList<>(); List<BoundingBox> bbox = (step != null ? step.boundingBoxName() != null : fStep.boundingBoxName() != null) ? new ArrayList<>() : null; //Note we are iterating (adding to output) in order: (0,0), (0, 1), ..., (0, C-1), ..., (R-1, C-1) - i.e., per row for (int j = 0; j < gy; j++) { for (int i = 0; i < gx; i++) { //Work out the corners of the current crop box Point boxTL = topLeft(j, i, (int) gy, (int) gx, tl, tr, bl, br); Point boxTR = topRight(j, i, (int) gy, (int) gx, tl, tr, bl, br); Point boxBL = bottomLeft(j, i, (int) gy, (int) gx, tl, tr, bl, br); Point boxBR = bottomRight(j, i, (int) gy, (int) gx, tl, tr, bl, br); double minX = min(boxTL.x(), boxTR.x(), boxBL.x(), boxBR.x()); double maxX = max(boxTL.x(), boxTR.x(), boxBL.x(), boxBR.x()); double minY = min(boxTL.y(), boxTR.y(), boxBL.y(), boxBR.y()); double maxY = max(boxTL.y(), boxTR.y(), boxBL.y(), boxBR.y()); int w = (int)(maxX - minX); int h = (int)(maxY - minY); if ((step != null && step.aspectRatio() != null) || (fStep != null && fStep.aspectRatio() != null)) { double currAr = w / (double) h; double ar = step != null ? step.aspectRatio() : fStep.aspectRatio(); if (ar < currAr) { //Need to increase height dimension to give desired AR int newH = (int) (w / ar); minY -= (newH - h) / 2.0; h = newH; } else if (ar > currAr) { //Need ot increase width dimension to give desired AR int newW = (int) (h * ar); minX -= (newW - w) / 2.0; w = newW; } } //Make sure bounds are inside image. TODO handle this differently for aspect ratio preserving? if (minX < 0) { w += minX; minX = 0; } if (minX + w > m.cols()) { w = m.cols() - (int)minX; } if (minY < 0) { h += minY; minY = 0; } if (minY + h > m.rows()) { h = m.rows() - (int)minY; } Rect r = new Rect((int)minX, (int)minY, w, h); Mat crop = m.apply(r).clone(); out.add(Image.create(crop)); if (bbox != null) { bbox.add(BoundingBox.createXY(minX / (double) m.cols(), (minX + w) / (double) m.cols(), minY / (double) m.rows(), (minY + h) / (double) m.rows())); } } } return Pair.of(out, bbox); }