Java Code Examples for org.apache.spark.api.java.JavaPairRDD#fromJavaRDD()
The following examples show how to use
org.apache.spark.api.java.JavaPairRDD#fromJavaRDD() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: AbstractJavaEsSparkTest.java From elasticsearch-hadoop with Apache License 2.0 | 6 votes |
public void testEsRDDWriteWithDynamicMappingBasedOnMaps() throws Exception { Map<String, ?> doc1 = ImmutableMap.of("one", 1, "two", 2, "number", 1); Map<String, ?> doc2 = ImmutableMap.of("OTP", "Otopeni", "SFO", "San Fran", "number", 2); String target = "spark-test-java-dyn-map-id-write/data"; Map<Metadata, Object> header1 = ImmutableMap.<Metadata, Object> of(ID, 1, TTL, "1d"); Map<Metadata, Object> header2 = ImmutableMap.<Metadata, Object> of(ID, "2", TTL, "2d"); JavaRDD<Tuple2<Object, Object>> tupleRdd = sc.parallelize(ImmutableList.<Tuple2<Object, Object>> of(new Tuple2(header1, doc1), new Tuple2(header2, doc2))); JavaPairRDD pairRDD = JavaPairRDD.fromJavaRDD(tupleRdd); // eliminate with static import JavaEsSpark.saveToEsWithMeta(pairRDD, target); assertEquals(2, JavaEsSpark.esRDD(sc, target).count()); assertTrue(RestUtils.exists(target + "/1")); assertTrue(RestUtils.exists(target + "/2")); String results = RestUtils.get(target + "/_search?"); assertThat(results, containsString("SFO")); }
Example 2
Source File: TransformationRDD.java From hui-bigdata-spark with Apache License 2.0 | 5 votes |
/** * Test co group. * demo计算目的: 以成绩分组 同学([成绩优秀学科],[成绩中等学科],[成绩差劲学科]) * * @since hui_project 1.0.0 */ public void testCoGroup() { SparkConf sparkConf = new SparkConf().setMaster("local[4]").setAppName("test"); JavaSparkContext sparkContext = new JavaSparkContext(sparkConf); //成绩优秀的学生+科目 JavaRDD<Tuple2<String, String>> scoreDetails1 = sparkContext.parallelize(Arrays.asList( new Tuple2("xiaoming", "语文") , new Tuple2("xiaoming", "数学") , new Tuple2("lihua", "数学") , new Tuple2("xiaofeng", "艺术"))); //成绩中等的学生+科目 JavaRDD<Tuple2<String, String>> scoreDetails2 = sparkContext.parallelize(Arrays.asList( new Tuple2("xiaoming", "艺术") , new Tuple2("lihua", "艺术") , new Tuple2("xiaofeng", "语文"))); //成绩差的学生+科目 JavaRDD<Tuple2<String, String>> scoreDetails3 = sparkContext.parallelize(Arrays.asList( new Tuple2("xiaoming", "英语") , new Tuple2("lihua", "英语") , new Tuple2("lihua", "数学") , new Tuple2("xiaofeng", "数学") , new Tuple2("xiaofeng", "英语"))); JavaPairRDD<String, String> scoreMapRDD1 = JavaPairRDD.fromJavaRDD(scoreDetails1); JavaPairRDD<String, String> scoreMapRDD2 = JavaPairRDD.fromJavaRDD(scoreDetails2); JavaPairRDD<String, String> scoreMapRDD3 = JavaPairRDD.fromJavaRDD(scoreDetails3); JavaPairRDD<String, Tuple3<Iterable<String>, Iterable<String>, Iterable<String>>> cogroupRDD = scoreMapRDD1.cogroup(scoreMapRDD2, scoreMapRDD3); checkResult(cogroupRDD.collect()); }
Example 3
Source File: TransformationRDDTest.java From hui-bigdata-spark with Apache License 2.0 | 5 votes |
/** * Test co group. * demo计算目的: 以成绩分组 同学([成绩优秀学科],[成绩中等学科],[成绩差劲学科]) * @since hui_project 1.0.0 */ @Test public void testCoGroup() { //成绩优秀的学生+科目 JavaRDD<Tuple2<String, String>> scoreDetails1 = sparkContext.parallelize(Arrays.asList( new Tuple2("xiaoming", "语文") , new Tuple2("xiaoming", "数学") , new Tuple2("lihua", "数学") , new Tuple2("xiaofeng", "艺术"))); //成绩中等的学生+科目 JavaRDD<Tuple2<String, String>> scoreDetails2 = sparkContext.parallelize(Arrays.asList( new Tuple2("xiaoming", "艺术") , new Tuple2("lihua", "艺术") , new Tuple2("xiaofeng", "语文"))); //成绩差的学生+科目 JavaRDD<Tuple2<String, String>> scoreDetails3 = sparkContext.parallelize(Arrays.asList( new Tuple2("xiaoming", "英语") , new Tuple2("lihua", "英语") , new Tuple2("lihua", "数学") , new Tuple2("xiaofeng", "数学") , new Tuple2("xiaofeng", "英语"))); JavaPairRDD<String, String> scoreMapRDD1 = JavaPairRDD.fromJavaRDD(scoreDetails1); JavaPairRDD<String, String> scoreMapRDD2 = JavaPairRDD.fromJavaRDD(scoreDetails2); JavaPairRDD<String, String> scoreMapRDD3 = JavaPairRDD.fromJavaRDD(scoreDetails3); JavaPairRDD<String, Tuple3<Iterable<String>, Iterable<String>, Iterable<String>>> cogroupRDD = scoreMapRDD1.cogroup(scoreMapRDD2, scoreMapRDD3); checkResult(cogroupRDD.collect()); }
Example 4
Source File: Model.java From predictionio-template-java-ecom-recommender with Apache License 2.0 | 5 votes |
public static Model load(String id, Params params, SparkContext sc) { JavaSparkContext jsc = JavaSparkContext.fromSparkContext(sc); JavaPairRDD<Integer, double[]> userFeatures = JavaPairRDD.<Integer, double[]>fromJavaRDD(jsc.<Tuple2<Integer, double[]>>objectFile("/tmp/" + id + "/userFeatures")); JavaPairRDD<Integer, Tuple2<String, double[]>> indexItemFeatures = JavaPairRDD.<Integer, Tuple2<String, double[]>>fromJavaRDD(jsc.<Tuple2<Integer, Tuple2<String, double[]>>>objectFile("/tmp/" + id + "/indexItemFeatures")); JavaPairRDD<String, Integer> userIndex = JavaPairRDD.<String, Integer>fromJavaRDD(jsc.<Tuple2<String, Integer>>objectFile("/tmp/" + id + "/userIndex")); JavaPairRDD<String, Integer> itemIndex = JavaPairRDD.<String, Integer>fromJavaRDD(jsc.<Tuple2<String, Integer>>objectFile("/tmp/" + id + "/itemIndex")); JavaRDD<ItemScore> itemPopularityScore = jsc.objectFile("/tmp/" + id + "/itemPopularityScore"); Map<String, Item> items = jsc.<Map<String, Item>>objectFile("/tmp/" + id + "/items").collect().get(0); logger.info("loaded model"); return new Model(userFeatures, indexItemFeatures, userIndex, itemIndex, itemPopularityScore, items); }
Example 5
Source File: PersistedInputRDD.java From tinkerpop with Apache License 2.0 | 5 votes |
@Override public JavaPairRDD<Object, VertexWritable> readGraphRDD(final Configuration configuration, final JavaSparkContext sparkContext) { if (!configuration.containsKey(Constants.GREMLIN_HADOOP_INPUT_LOCATION)) throw new IllegalArgumentException("There is no provided " + Constants.GREMLIN_HADOOP_INPUT_LOCATION + " to read the persisted RDD from"); Spark.create(sparkContext.sc()); final Optional<String> graphLocation = Constants.getSearchGraphLocation(configuration.getString(Constants.GREMLIN_HADOOP_INPUT_LOCATION), SparkContextStorage.open()); return graphLocation.isPresent() ? JavaPairRDD.fromJavaRDD((JavaRDD) Spark.getRDD(graphLocation.get()).toJavaRDD()) : JavaPairRDD.fromJavaRDD(sparkContext.emptyRDD()); }
Example 6
Source File: CollabFilterCassandra8.java From Spark-Cassandra-Collabfiltering with Apache License 2.0 | 5 votes |
public double validate(JavaRDD<Rating> predictionJavaRdd, CassandraJavaRDD<CassandraRow> validationsCassRdd) { JavaPairRDD<Tuple2<Integer, Integer>, Double> predictionsJavaPairs = JavaPairRDD.fromJavaRDD(predictionJavaRdd.map(pred -> new Tuple2<Tuple2<Integer, Integer>, Double>(new Tuple2<Integer, Integer>(pred.user(), pred.product()), pred.rating()))); JavaRDD<Rating> validationRatings = validationsCassRdd.map(validation -> new Rating(validation.getInt(RatingDO.USER_COL), validation.getInt(RatingDO.PRODUCT_COL), validation.getInt(RatingDO.RATING_COL))); JavaRDD<Tuple2<Double, Double>> validationAndPredictions = JavaPairRDD.fromJavaRDD(validationRatings.map(validationRating -> new Tuple2<Tuple2<Integer, Integer>, Double>(new Tuple2<Integer, Integer>(validationRating.user(), validationRating.product()), validationRating.rating()))).join(predictionsJavaPairs).values(); double meanSquaredError = JavaDoubleRDD.fromRDD(validationAndPredictions.map(pair -> { Double err = pair._1() - pair._2(); return (Object) (err * err);// No covariance! Need to cast to Object }).rdd()).mean(); double rmse = Math.sqrt(meanSquaredError); return rmse; }
Example 7
Source File: CollabFilterCassandra7.java From Spark-Cassandra-Collabfiltering with Apache License 2.0 | 5 votes |
public double validate(JavaRDD<Rating> predictionJavaRdd, CassandraJavaRDD<CassandraRow> validationsCassRdd) { JavaPairRDD<Tuple2<Integer, Integer>, Double> predictionsJavaPairs = JavaPairRDD.fromJavaRDD(predictionJavaRdd.map(new org.apache.spark.api.java.function.Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() { @Override public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating pred) throws Exception { return new Tuple2<Tuple2<Integer, Integer>, Double>(new Tuple2<Integer, Integer>(pred.user(), pred.product()), pred.rating()); } // })); JavaRDD<Rating> validationRatings = validationsCassRdd.map(new org.apache.spark.api.java.function.Function<CassandraRow, Rating>() { @Override public Rating call(CassandraRow validation) throws Exception { return new Rating(validation.getInt(RatingDO.USER_COL), validation.getInt(RatingDO.PRODUCT_COL), validation.getInt(RatingDO.RATING_COL)); } }); JavaRDD<Tuple2<Double, Double>> validationAndPredictions = JavaPairRDD.fromJavaRDD(validationRatings.map(new org.apache.spark.api.java.function.Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() { @Override public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating validationRating) throws Exception { return new Tuple2<Tuple2<Integer, Integer>, Double>(new Tuple2<Integer, Integer>(validationRating.user(), validationRating.product()), validationRating.rating()); } })).join(predictionsJavaPairs).values(); double meanSquaredError = JavaDoubleRDD.fromRDD(validationAndPredictions.map(new org.apache.spark.api.java.function.Function<Tuple2<Double, Double>, Object>() { @Override public Object call(Tuple2<Double, Double> pair) throws Exception { Double err = pair._1() - pair._2(); return (Object) (err * err);// No covariance! Need to cast } }).rdd()).mean(); double rmse = Math.sqrt(meanSquaredError); return rmse; }
Example 8
Source File: JavaLatentDirichletAllocationExample.java From SparkDemo with MIT License | 4 votes |
public static void main(String[] args) { SparkConf conf = new SparkConf().setAppName("JavaKLatentDirichletAllocationExample"); JavaSparkContext jsc = new JavaSparkContext(conf); // $example on$ // Load and parse the data String path = "data/mllib/sample_lda_data.txt"; JavaRDD<String> data = jsc.textFile(path); JavaRDD<Vector> parsedData = data.map( new Function<String, Vector>() { public Vector call(String s) { String[] sarray = s.trim().split(" "); double[] values = new double[sarray.length]; for (int i = 0; i < sarray.length; i++) { values[i] = Double.parseDouble(sarray[i]); } return Vectors.dense(values); } } ); // Index documents with unique IDs JavaPairRDD<Long, Vector> corpus = JavaPairRDD.fromJavaRDD(parsedData.zipWithIndex().map( new Function<Tuple2<Vector, Long>, Tuple2<Long, Vector>>() { public Tuple2<Long, Vector> call(Tuple2<Vector, Long> doc_id) { return doc_id.swap(); } } ) ); corpus.cache(); // Cluster the documents into three topics using LDA LDAModel ldaModel = new LDA().setK(3).run(corpus); // Output topics. Each is a distribution over words (matching word count vectors) System.out.println("Learned topics (as distributions over vocab of " + ldaModel.vocabSize() + " words):"); Matrix topics = ldaModel.topicsMatrix(); for (int topic = 0; topic < 3; topic++) { System.out.print("Topic " + topic + ":"); for (int word = 0; word < ldaModel.vocabSize(); word++) { System.out.print(" " + topics.apply(word, topic)); } System.out.println(); } ldaModel.save(jsc.sc(), "target/org/apache/spark/JavaLatentDirichletAllocationExample/LDAModel"); DistributedLDAModel sameModel = DistributedLDAModel.load(jsc.sc(), "target/org/apache/spark/JavaLatentDirichletAllocationExample/LDAModel"); // $example off$ jsc.stop(); }
Example 9
Source File: Basic.java From learning-spark-with-java with MIT License | 4 votes |
public static void main(String[] args) { SparkSession spark = SparkSession .builder() .appName("Pairs-Basic") .master("local[4]") .getOrCreate(); JavaSparkContext sc = new JavaSparkContext(spark.sparkContext()); List<Tuple2<String, Integer>> pairs = Arrays.asList( new Tuple2<>("1",9), new Tuple2<>("1",2), new Tuple2<>("1",1), new Tuple2<>("2",3), new Tuple2<>("2",4), new Tuple2<>("3",1), new Tuple2<>("3",5), new Tuple2<>("6",2), new Tuple2<>("6",1), new Tuple2<>("6",4), new Tuple2<>("8",1)); // a randomly partitioned pair RDD JavaPairRDD<String, Integer> pairsRDD = sc.parallelizePairs(pairs, 4); System.out.println("*** the original pairs"); pairsRDD.foreach(i -> System.out.println(i)); // // Pairs can be collected as a Map of, but this only works well if the // keys are unique. Here they aren't so an arbitrary value is chosen for each: // Map<String, Integer> pairsAsMap = pairsRDD.collectAsMap(); System.out.println("*** the pretty useless map"); System.out.println(pairsAsMap); // let's say we just want the pair with minimum value for each key // we can use one of the handy methods in PairRDDFunctions. To reduce we need // only supply a single function to combine all the values for each key -- the result // has to have the same type as the values JavaPairRDD<String, Integer> reducedRDD = pairsRDD.reduceByKey(Math::min); System.out.println("*** the reduced pairs"); reducedRDD.foreach(i -> System.out.println(i)); // the reduced pairs have unique keys so collecting to a map works a lot better Map<String, Integer> reducedAsMap = reducedRDD.collectAsMap(); System.out.println("*** the reduced pairs as a map"); System.out.println(reducedAsMap); // folding is a little mor general: we get to specifiy the identity value: // say 0 for adding and 1 for multiplying JavaPairRDD<String, Integer> foldedRDD = pairsRDD.foldByKey(1, (x, y) -> x * y); System.out.println("*** the folded pairs"); foldedRDD.foreach(i -> System.out.println(i)); // Combining is more general: you can produce values of a different type, which is very powerful. // You need to provide three functions: the first converts an individual value to the new type, the second // incorporates an additional value into the the result, and the third combines intermediate results, which is // used by execution to avoid excessive communication between partitions. The first function is applied once // per partition and the second is used for each additional value in the partition. // Below is a pretty classical example of its use: compute a per-key average by first computing the sum and count // for each key and then dividing. JavaPairRDD<String, Tuple2<Integer, Integer>> combinedRDD = pairsRDD.combineByKey( value -> new Tuple2<>(value, 1), (sumAndCount, value) -> new Tuple2<>(sumAndCount._1() + value, sumAndCount._2() + 1), (sumAndCount1, sumAndCount2) -> new Tuple2<>(sumAndCount1._1() + sumAndCount2._1(), sumAndCount1._2() + sumAndCount2._2()) ); JavaPairRDD<String, Double> averageRDD = combinedRDD.mapValues(sumAndCount -> (double) sumAndCount._1() / sumAndCount._2()); System.out.println("*** the average pairs"); averageRDD.foreach(i -> System.out.println(i)); // The dividing could be done just by calling map, but in Java this requires a lot of conversion between the // two kinds of RDD and ends up *VERY* cumbersome. JavaRDD<Tuple2<String, Tuple2<Integer, Integer>>> tupleCombinedRDD = JavaRDD.fromRDD(combinedRDD.rdd(), combinedRDD.classTag()); JavaRDD<Tuple2<String, Double>> tupleDividedRDD = tupleCombinedRDD.map(keyAndsumAndCount -> new Tuple2<>(keyAndsumAndCount._1(), (double) keyAndsumAndCount._2()._1() / keyAndsumAndCount._2()._2())); JavaPairRDD<String, Double> averageRDDtheHardWay = JavaPairRDD.fromJavaRDD(tupleDividedRDD); // remember these won't necessarily come out int he same order so they may not obviously be // the same as above System.out.println("*** the average pairs the hard way"); averageRDDtheHardWay.foreach(i -> System.out.println(i)); spark.stop(); }
Example 10
Source File: PersistedInputRDD.java From tinkerpop with Apache License 2.0 | 4 votes |
@Override public <K, V> JavaPairRDD<K, V> readMemoryRDD(final Configuration configuration, final String memoryKey, final JavaSparkContext sparkContext) { if (!configuration.containsKey(Constants.GREMLIN_HADOOP_INPUT_LOCATION)) throw new IllegalArgumentException("There is no provided " + Constants.GREMLIN_HADOOP_INPUT_LOCATION + " to read the persisted RDD from"); return JavaPairRDD.fromJavaRDD((JavaRDD) Spark.getRDD(Constants.getMemoryLocation(configuration.getString(Constants.GREMLIN_HADOOP_INPUT_LOCATION), memoryKey)).toJavaRDD()); }
Example 11
Source File: GeoWaveRDDLoader.java From geowave with Apache License 2.0 | 4 votes |
public static JavaPairRDD<GeoWaveInputKey, SimpleFeature> loadRawRDD( final SparkContext sc, final DataStorePluginOptions storeOptions, final RDDOptions rddOpts) throws IOException { if (sc == null) { LOGGER.error("Must supply a valid Spark Context. Please set SparkContext and try again."); return null; } if (storeOptions == null) { LOGGER.error("Must supply input store to load. Please set storeOptions and try again."); return null; } if (rddOpts == null) { LOGGER.error("Must supply valid RDDOptions to load a rdd."); return null; } final Configuration conf = new Configuration(sc.hadoopConfiguration()); GeoWaveInputFormat.setStoreOptions(conf, storeOptions); if (rddOpts.getQuery() != null) { GeoWaveInputFormat.setQuery( conf, rddOpts.getQuery(), storeOptions.createAdapterStore(), storeOptions.createInternalAdapterStore(), storeOptions.createIndexStore()); } if ((rddOpts.getMinSplits() > -1) || (rddOpts.getMaxSplits() > -1)) { GeoWaveInputFormat.setMinimumSplitCount(conf, rddOpts.getMinSplits()); GeoWaveInputFormat.setMaximumSplitCount(conf, rddOpts.getMaxSplits()); } else { final int defaultSplitsSpark = sc.getConf().getInt("spark.default.parallelism", -1); // Attempt to grab default partition count for spark and split data // along that. // Otherwise just fallback to default according to index strategy if (defaultSplitsSpark != -1) { GeoWaveInputFormat.setMinimumSplitCount(conf, defaultSplitsSpark); GeoWaveInputFormat.setMaximumSplitCount(conf, defaultSplitsSpark); } } final RDD<Tuple2<GeoWaveInputKey, SimpleFeature>> rdd = sc.newAPIHadoopRDD( conf, GeoWaveInputFormat.class, GeoWaveInputKey.class, SimpleFeature.class); final JavaPairRDD<GeoWaveInputKey, SimpleFeature> javaRdd = JavaPairRDD.fromJavaRDD(rdd.toJavaRDD()); return javaRdd; }
Example 12
Source File: GeoWaveRDDLoader.java From geowave with Apache License 2.0 | 4 votes |
public static JavaPairRDD<GeoWaveInputKey, GridCoverage> loadRawRasterRDD( final SparkContext sc, final DataStorePluginOptions storeOptions, final String indexName, final Integer minSplits, final Integer maxSplits) throws IOException { if (sc == null) { LOGGER.error("Must supply a valid Spark Context. Please set SparkContext and try again."); return null; } if (storeOptions == null) { LOGGER.error("Must supply input store to load. Please set storeOptions and try again."); return null; } final Configuration conf = new Configuration(sc.hadoopConfiguration()); GeoWaveInputFormat.setStoreOptions(conf, storeOptions); if (indexName != null) { GeoWaveInputFormat.setQuery( conf, QueryBuilder.newBuilder().indexName(indexName).build(), storeOptions.createAdapterStore(), storeOptions.createInternalAdapterStore(), storeOptions.createIndexStore()); } if (((minSplits != null) && (minSplits > -1)) || ((maxSplits != null) && (maxSplits > -1))) { GeoWaveInputFormat.setMinimumSplitCount(conf, minSplits); GeoWaveInputFormat.setMaximumSplitCount(conf, maxSplits); } else { final int defaultSplitsSpark = sc.getConf().getInt("spark.default.parallelism", -1); // Attempt to grab default partition count for spark and split data // along that. // Otherwise just fallback to default according to index strategy if (defaultSplitsSpark != -1) { GeoWaveInputFormat.setMinimumSplitCount(conf, defaultSplitsSpark); GeoWaveInputFormat.setMaximumSplitCount(conf, defaultSplitsSpark); } } final RDD<Tuple2<GeoWaveInputKey, GridCoverage>> rdd = sc.newAPIHadoopRDD( conf, GeoWaveInputFormat.class, GeoWaveInputKey.class, GridCoverage.class); final JavaPairRDD<GeoWaveInputKey, GridCoverage> javaRdd = JavaPairRDD.fromJavaRDD(rdd.toJavaRDD()); return javaRdd; }