Java Code Examples for org.apache.commons.math3.linear.ArrayRealVector#getDimension()
The following examples show how to use
org.apache.commons.math3.linear.ArrayRealVector#getDimension() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: SDAR2D.java From incubator-hivemall with Apache License 2.0 | 4 votes |
/** * @param x series of input in LIFO order * @param k AR window size * @return x_hat predicted x * @link https://en.wikipedia.org/wiki/Matrix_multiplication#Outer_product */ @Nonnull public RealVector update(@Nonnull final ArrayRealVector[] x, final int k) { Preconditions.checkArgument(x.length >= 1, "x.length MUST be greater than 1: " + x.length); Preconditions.checkArgument(k >= 0, "k MUST be greater than or equals to 0: ", k); Preconditions.checkArgument(k < _C.length, "k MUST be less than |C| but " + "k=" + k + ", |C|=" + _C.length); final ArrayRealVector x_t = x[0]; final int dims = x_t.getDimension(); if (_initialized == false) { this._mu = x_t.copy(); this._sigma = new BlockRealMatrix(dims, dims); assert (_sigma.isSquare()); this._initialized = true; return new ArrayRealVector(dims); } Preconditions.checkArgument(k >= 1, "k MUST be greater than 0: ", k); // old parameters are accessible to compute the Hellinger distance this._muOld = _mu.copy(); this._sigmaOld = _sigma.copy(); // update mean vector // \hat{mu} := (1-r) \hat{µ} + r x_t this._mu = _mu.mapMultiply(1.d - _r).add(x_t.mapMultiply(_r)); // compute residuals (x - \hat{µ}) final RealVector[] xResidual = new RealVector[k + 1]; for (int j = 0; j <= k; j++) { xResidual[j] = x[j].subtract(_mu); } // update covariance matrices // C_j := (1-r) C_j + r (x_t - \hat{µ}) (x_{t-j} - \hat{µ})' final RealMatrix[] C = this._C; final RealVector rxResidual0 = xResidual[0].mapMultiply(_r); // r (x_t - \hat{µ}) for (int j = 0; j <= k; j++) { RealMatrix Cj = C[j]; if (Cj == null) { C[j] = rxResidual0.outerProduct(x[j].subtract(_mu)); } else { C[j] = Cj.scalarMultiply(1.d - _r) .add(rxResidual0.outerProduct(x[j].subtract(_mu))); } } // solve A in the following Yule-Walker equation // C_j = ∑_{i=1}^{k} A_i C_{j-i} where j = 1..k, C_{-i} = C_i' /* * /C_1\ /A_1\ /C_0 |C_1' |C_2' | . . . |C_{k-1}' \ * |---| |---| |--------+--------+--------+ +---------| * |C_2| |A_2| |C_1 |C_0 |C_1' | . | * |---| |---| |--------+--------+--------+ . | * |C_3| = |A_3| |C_2 |C_1 |C_0 | . | * | . | | . | |--------+--------+--------+ | * | . | | . | | . . | * | . | | . | | . . | * |---| |---| |--------+ +--------| * \C_k/ \A_k/ \C_{k-1} | . . . |C_0 / */ RealMatrix[][] rhs = MatrixUtils.toeplitz(C, k); RealMatrix[] lhs = Arrays.copyOfRange(C, 1, k + 1); RealMatrix R = MatrixUtils.combinedMatrices(rhs, dims); RealMatrix L = MatrixUtils.combinedMatrices(lhs); RealMatrix A = MatrixUtils.solve(L, R, false); // estimate x // \hat{x} = \hat{µ} + ∑_{i=1}^k A_i (x_{t-i} - \hat{µ}) RealVector x_hat = _mu.copy(); for (int i = 0; i < k; i++) { int offset = i * dims; RealMatrix Ai = A.getSubMatrix(offset, offset + dims - 1, 0, dims - 1); x_hat = x_hat.add(Ai.operate(xResidual[i + 1])); } // update model covariance // ∑ := (1-r) ∑ + r (x - \hat{x}) (x - \hat{x})' RealVector xEstimateResidual = x_t.subtract(x_hat); this._sigma = _sigma.scalarMultiply(1.d - _r) .add(xEstimateResidual.mapMultiply(_r).outerProduct(xEstimateResidual)); return x_hat; }