Java Code Examples for cern.jet.random.Normal#setVariance()
The following examples show how to use
cern.jet.random.Normal#setVariance() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: VMPNormalTest.java From toolbox with Apache License 2.0 | 4 votes |
public static void test2() throws IOException, ClassNotFoundException{ Variables variables = new Variables(); Variable varA = variables.newGaussianVariable("A"); Variable varB = variables.newGaussianVariable("B"); DAG dag = new DAG(variables); dag.getParentSet(varB).addParent(varA); BayesianNetwork bn = new BayesianNetwork(dag); Normal distA = bn.getConditionalDistribution(varA); ConditionalLinearGaussian distB = bn.getConditionalDistribution(varB); distA.setMean(1); distA.setVariance(0.25); distB.setIntercept(1); //distB.setCoeffParents(new double[]{1}); distB.setCoeffForParent(varA, 1); distB.setVariance(0.25); if (Main.VERBOSE) System.out.println(bn.toString()); double meanPA = distA.getMean(); double sdPA = distA.getSd(); double b0PB = distB.getIntercept(); //double b1PB = distB.getCoeffParents()[0]; double b1PB = distB.getCoeffForParent(varA); double sdPB = distB.getSd(); VMP vmp = new VMP(); vmp.setTestELBO(true); vmp.setMaxIter(100); vmp.setThreshold(0.0001); vmp.setModel(bn); EF_Normal qADist = ((EF_Normal) vmp.getNodes().get(0).getQDist()); EF_Normal qBDist = ((EF_Normal) vmp.getNodes().get(1).getQDist()); double meanQA= qADist.getMomentParameters().get(0); double sdQA= Math.sqrt(qADist.getMomentParameters().get(1) - qADist.getMomentParameters().get(0) * qADist.getMomentParameters().get(0)); double meanQB= qBDist.getMomentParameters().get(0); double sdQB= Math.sqrt(qBDist.getMomentParameters().get(1) - qBDist.getMomentParameters().get(0)*qBDist.getMomentParameters().get(0)); vmp.runInference(); Normal postA = vmp.getPosterior(varA); if (Main.VERBOSE) System.out.println("P(A) = " + postA.toString()); Normal postB = ((Normal)vmp.getPosterior(varB)); if (Main.VERBOSE) System.out.println("P(B) = " + postB.toString()); boolean convergence = false; double oldvalue = 0; while(!convergence){ sdQA = Math.sqrt(Math.pow(b1PB*b1PB/(sdPB*sdPB) + 1.0/(sdPA*sdPA),-1)); meanQA = sdQA*sdQA*(b1PB*meanQB/(sdPB*sdPB) - b0PB*b1PB/(sdPB*sdPB) + meanPA/(sdPA*sdPA)); sdQB = sdPB; meanQB = sdQB*sdQB*(b0PB/(sdPB*sdPB) + b1PB*meanQA/(sdPB*sdPB)); if (Math.abs(sdQA + meanQA + sdQB + meanQB - oldvalue) < 0.001) { convergence = true; } oldvalue = sdQA + meanQA + sdQB + meanQB ; } if (Main.VERBOSE) System.out.println("Mean and Sd of A: " + meanQA +", " + sdQA ); if (Main.VERBOSE) System.out.println("Mean and Sd of B: " + meanQB +", " + sdQB ); Assert.assertEquals(postA.getMean(),meanQA,0.01); Assert.assertEquals(postA.getSd(),sdQA,0.01); Assert.assertEquals(postB.getMean(),meanQB,0.01); Assert.assertEquals(postB.getSd(),sdQB,0.01); }
Example 2
Source File: VMPNormalTest.java From toolbox with Apache License 2.0 | 4 votes |
public static void test4() throws IOException, ClassNotFoundException{ Variables variables = new Variables(); Variable varA = variables.newGaussianVariable("A"); Variable varB = variables.newGaussianVariable("B"); Variable varC = variables.newGaussianVariable("C"); DAG dag = new DAG(variables); dag.getParentSet(varC).addParent(varA); dag.getParentSet(varC).addParent(varB); BayesianNetwork bn = new BayesianNetwork(dag); Normal distA = bn.getConditionalDistribution(varA); Normal distB = bn.getConditionalDistribution(varB); ConditionalLinearGaussian distC = bn.getConditionalDistribution(varC); distA.setMean(1); distA.setVariance(0.25); distB.setMean(1.2); distB.setVariance(0.64); distC.setIntercept(1); //distC.setCoeffParents(new double[]{1, 1}); distC.setCoeffForParent(varA, 1); distC.setCoeffForParent(varB, 1); distC.setVariance(0.25); if (Main.VERBOSE) System.out.println(bn.toString()); double meanPA = distA.getMean(); double sdPA = distA.getSd(); double meanPB = distB.getMean(); double sdPB = distB.getSd(); double b0PC = distC.getIntercept(); //double b1PC = distC.getCoeffParents()[0]; //double b2PC = distC.getCoeffParents()[1]; double b1PC = distC.getCoeffForParent(varA); double b2PC = distC.getCoeffForParent(varB); double sdPC = distC.getSd(); VMP vmp = new VMP(); vmp.setTestELBO(true); vmp.setMaxIter(100); vmp.setThreshold(0.0001); vmp.setModel(bn); EF_Normal qADist = ((EF_Normal) vmp.getNodes().get(0).getQDist()); EF_Normal qBDist = ((EF_Normal) vmp.getNodes().get(1).getQDist()); EF_Normal qCDist = ((EF_Normal) vmp.getNodes().get(2).getQDist()); double meanQA= qADist.getMomentParameters().get(0); double sdQA= Math.sqrt(qADist.getMomentParameters().get(1) - qADist.getMomentParameters().get(0) * qADist.getMomentParameters().get(0)); double meanQB= qBDist.getMomentParameters().get(0); double sdQB= Math.sqrt(qBDist.getMomentParameters().get(1) - qBDist.getMomentParameters().get(0) * qBDist.getMomentParameters().get(0)); double meanQC= 0.7; HashMapAssignment assignment = new HashMapAssignment(1); assignment.setValue(varC, 0.7); vmp.setEvidence(assignment); vmp.runInference(); Normal postA = vmp.getPosterior(varA); if (Main.VERBOSE) System.out.println("P(A) = " + postA.toString()); Normal postB = vmp.getPosterior(varB); if (Main.VERBOSE) System.out.println("P(B) = " + postB.toString()); boolean convergence = false; double oldvalue = 0; while(!convergence){ sdQA = Math.sqrt(Math.pow(b1PC*b1PC/(sdPC*sdPC) + 1.0/(sdPA*sdPA),-1)); meanQA = sdQA*sdQA*(b1PC*meanQC/(sdPC*sdPC) - b0PC*b1PC/(sdPC*sdPC) - b1PC*b2PC*meanQB/(sdPC*sdPC) + meanPA/(sdPA*sdPA)); sdQB = Math.sqrt(Math.pow(b2PC*b2PC/(sdPC*sdPC) + 1.0/(sdPB*sdPB),-1)); meanQB = sdQB*sdQB*(b2PC*meanQC/(sdPC*sdPC) - b0PC*b2PC/(sdPC*sdPC) - b1PC*b2PC*meanQA/(sdPC*sdPC) + meanPB/(sdPB*sdPB)); if (Math.abs(sdQA + meanQA + sdQB + meanQB - oldvalue) < 0.001) { convergence = true; } oldvalue = sdQA + meanQA + sdQB + meanQB; } if (Main.VERBOSE) System.out.println("Mean and Sd of A: " + meanQA +", " + sdQA ); if (Main.VERBOSE) System.out.println("Mean and Sd of B: " + meanQB +", " + sdQB ); Assert.assertEquals(postA.getMean(),meanQA,0.01); Assert.assertEquals(postA.getSd(),sdQA,0.01); Assert.assertEquals(postB.getMean(),meanQB,0.01); Assert.assertEquals(postB.getSd(),sdQB,0.01); }
Example 3
Source File: VMPNormalTest.java From toolbox with Apache License 2.0 | 4 votes |
public static void test6() throws IOException, ClassNotFoundException{ Variables variables = new Variables(); Variable varA = variables.newGaussianVariable("A"); Variable varB = variables.newGaussianVariable("B"); Variable varC = variables.newGaussianVariable("C"); DAG dag = new DAG(variables); dag.getParentSet(varA).addParent(varC); dag.getParentSet(varB).addParent(varC); BayesianNetwork bn = new BayesianNetwork(dag); ConditionalLinearGaussian distA = bn.getConditionalDistribution(varA); ConditionalLinearGaussian distB = bn.getConditionalDistribution(varB); Normal distC = bn.getConditionalDistribution(varC); distA.setIntercept(1); //distA.setCoeffParents(new double[]{1}); distA.setCoeffForParent(varC, 1); distA.setVariance(0.25); distB.setIntercept(1.5); //distB.setCoeffParents(new double[]{1}); distB.setCoeffForParent(varC, 1); distB.setVariance(0.64); distC.setMean(1); distC.setVariance(0.25); if (Main.VERBOSE) System.out.println(bn.toString()); double b0PA = distA.getIntercept(); //double b1PA = distA.getCoeffParents()[0]; double b1PA = distA.getCoeffForParent(varC); double sdPA = distA.getSd(); double b0PB = distB.getIntercept(); //double b1PB = distB.getCoeffParents()[0]; double b1PB = distB.getCoeffForParent(varC); double sdPB = distB.getSd(); double meanPC = distC.getMean(); double sdPC = distC.getSd(); VMP vmp = new VMP(); vmp.setTestELBO(true); vmp.setMaxIter(100); vmp.setThreshold(0.0001); vmp.setModel(bn); EF_Normal qADist = ((EF_Normal) vmp.getNodes().get(0).getQDist()); EF_Normal qBDist = ((EF_Normal) vmp.getNodes().get(1).getQDist()); EF_Normal qCDist = ((EF_Normal) vmp.getNodes().get(2).getQDist()); double meanQA= 0.7; double meanQB= 0.2; HashMapAssignment assignment = new HashMapAssignment(1); assignment.setValue(varA, 0.7); assignment.setValue(varB, 0.2); double meanQC= qCDist.getMomentParameters().get(0); double sdQC= Math.sqrt(qCDist.getMomentParameters().get(1) - qCDist.getMomentParameters().get(0)*qCDist.getMomentParameters().get(0)); vmp.setEvidence(assignment); vmp.runInference(); Normal postC = ((Normal)vmp.getPosterior(varC)); if (Main.VERBOSE) System.out.println("P(C) = " + postC.toString()); boolean convergence = false; double oldvalue = 0; while(!convergence){ sdQC = Math.sqrt(Math.pow(b1PA*b1PA/(sdPA*sdPA) + b1PB*b1PB/(sdPB*sdPB) + 1.0/(sdPC*sdPC),-1)); meanQC = sdQC*sdQC*(b1PA*meanQA/(sdPA*sdPA) - b0PA*b1PA/(sdPA*sdPA) + b1PB*meanQB/(sdPB*sdPB) - b0PB*b1PB/(sdPB*sdPB) + meanPC/(sdPC*sdPC)); if (Math.abs(sdQC + meanQC - oldvalue) < 0.001) { convergence = true; } oldvalue = sdQC + meanQC; } if (Main.VERBOSE) System.out.println("Mean and Sd of C: " + meanQC +", " + sdQC ); Assert.assertEquals(postC.getMean(),meanQC,0.01); Assert.assertEquals(postC.getSd(),sdQC,0.01); }
Example 4
Source File: VMPNormalTest.java From toolbox with Apache License 2.0 | 4 votes |
public static void test8() throws IOException, ClassNotFoundException{ Variables variables = new Variables(); Variable varA = variables.newGaussianVariable("A"); Variable varB = variables.newGaussianVariable("B"); Variable varC = variables.newGaussianVariable("C"); DAG dag = new DAG(variables); dag.getParentSet(varB).addParent(varA); dag.getParentSet(varC).addParent(varB); BayesianNetwork bn = new BayesianNetwork(dag); Normal distA = bn.getConditionalDistribution(varA); ConditionalLinearGaussian distB = bn.getConditionalDistribution(varB); ConditionalLinearGaussian distC = bn.getConditionalDistribution(varC); distA.setMean(1); distA.setVariance(0.25); distB.setIntercept(1); //distB.setCoeffParents(new double[]{1}); distB.setCoeffForParent(varA, 1); distB.setVariance(0.04); distC.setIntercept(1); //distC.setCoeffParents(new double[]{1}); distC.setCoeffForParent(varB, 1); distC.setVariance(0.25); if (Main.VERBOSE) System.out.println(bn.toString()); double meanPA = distA.getMean(); double sdPA = distA.getSd(); double b0PB = distB.getIntercept(); //double b1PB = distB.getCoeffParents()[0]; double b1PB = distB.getCoeffForParent(varA); double sdPB = distB.getSd(); double b0PC = distC.getIntercept(); //double b1PC = distC.getCoeffParents()[0]; double b1PC = distC.getCoeffForParent(varB); double sdPC = distC.getSd(); VMP vmp = new VMP(); vmp.setTestELBO(true); vmp.setMaxIter(100); vmp.setThreshold(0.0001); vmp.setModel(bn); EF_Normal qADist = ((EF_Normal) vmp.getNodes().get(0).getQDist()); EF_Normal qBDist = ((EF_Normal) vmp.getNodes().get(1).getQDist()); EF_Normal qCDist = ((EF_Normal) vmp.getNodes().get(2).getQDist()); double meanQA= qADist.getMomentParameters().get(0); double sdQA= Math.sqrt(qADist.getMomentParameters().get(1) - qADist.getMomentParameters().get(0) * qADist.getMomentParameters().get(0)); double meanQC= qCDist.getMomentParameters().get(0); double sdQC= Math.sqrt(qCDist.getMomentParameters().get(1) - qCDist.getMomentParameters().get(0)*qCDist.getMomentParameters().get(0)); double meanQB= 0.4; HashMapAssignment assignment = new HashMapAssignment(1); assignment.setValue(varB, 0.4); vmp.setEvidence(assignment); vmp.runInference(); Normal postA = vmp.getPosterior(varA); if (Main.VERBOSE) System.out.println("P(A) = " + postA.toString()); Normal postC = ((Normal)vmp.getPosterior(varC)); if (Main.VERBOSE) System.out.println("P(C) = " + postC.toString()); boolean convergence = false; double oldvalue = 0; while(!convergence){ sdQA = Math.sqrt(Math.pow(b1PB*b1PB/(sdPB*sdPB) + 1.0/(sdPA*sdPA),-1)); meanQA = sdQA*sdQA*(b1PB*meanQB/(sdPB*sdPB) - b0PB*b1PB/(sdPB*sdPB) + meanPA/(sdPA*sdPA)); sdQC = sdPC; meanQC = sdQC*sdQC*(b0PC/(sdPC*sdPC) + b1PC*meanQB/(sdPC*sdPC)); if (Math.abs(sdQA + meanQA + sdQC + meanQC - oldvalue) < 0.001) { convergence = true; } oldvalue = sdQA + meanQA + + sdQC + meanQC; } if (Main.VERBOSE) System.out.println("Mean and Sd of A: " + meanQA +", " + sdQA ); if (Main.VERBOSE) System.out.println("Mean and Sd of C: " + meanQC +", " + sdQC ); Assert.assertEquals(postA.getMean(),meanQA,0.01); Assert.assertEquals(postA.getSd(),sdQA,0.01); Assert.assertEquals(postC.getMean(),meanQC,0.01); Assert.assertEquals(postC.getSd(),sdQC,0.01); }