Java Code Examples for meka.core.Result#setInfo()
The following examples show how to use
meka.core.Result#setInfo() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: Evaluation.java From meka with GNU General Public License v3.0 | 5 votes |
/** * EvaluateModel - Build model 'h' on 'D_train', test it on 'D_test', threshold it according to 'top', verbosity 'vop'. * @param h a multi-dim. classifier * @param D_train training data * @param D_test test data * @param top Threshold OPtion (pertains to multi-label data only) * @param vop Verbosity OPtion (which measures do we want to calculate/output) * @return Result raw prediction data with evaluation statistics included. */ public static Result evaluateModel(MultiXClassifier h, Instances D_train, Instances D_test, String top, String vop) throws Exception { Result r = evaluateModel(h,D_train,D_test); if (h instanceof MultiTargetClassifier || isMT(D_test)) { r.setInfo("Type","MT"); } else if (h instanceof MultiLabelClassifier) { r.setInfo("Type","ML"); r.setInfo("Threshold",MLEvalUtils.getThreshold(r.predictions,D_train,top)); // <-- only relevant to ML (for now), but we'll put it in here in any case } r.setInfo("Verbosity",vop); r.output = Result.getStats(r, vop); return r; }
Example 2
Source File: Evaluation.java From meka with GNU General Public License v3.0 | 5 votes |
/** * EvaluateModel - Assume 'h' is already built, test it on 'D_test', threshold it according to 'top', verbosity 'vop'. * @param h a multi-dim. classifier * @param D_test test data * @param tal Threshold VALUES (not option) * @param vop Verbosity OPtion (which measures do we want to calculate/output) * @return Result raw prediction data with evaluation statistics included. */ public static Result evaluateModel(MultiXClassifier h, Instances D_test, String tal, String vop) throws Exception { Result r = testClassifier(h,D_test); if (h instanceof MultiTargetClassifier || isMT(D_test)) { r.setInfo("Type","MT"); } else if (h instanceof MultiLabelClassifier) { r.setInfo("Type","ML"); } r.setInfo("Threshold",tal); r.setInfo("Verbosity",vop); r.output = Result.getStats(r, vop); return r; }
Example 3
Source File: Evaluation.java From meka with GNU General Public License v3.0 | 5 votes |
/** * CVModel - Split D into train/test folds, and then train and evaluate on each one. * @param h a multi-output classifier * @param D test data Instances * @param numFolds number of folds of CV * @param top Threshold OPtion (pertains to multi-label data only) * @param vop Verbosity OPtion (which measures do we want to calculate/output) * @return Result raw prediction data with evaluation statistics included. */ public static Result cvModel(MultiLabelClassifier h, Instances D, int numFolds, String top, String vop) throws Exception { Result r_[] = new Result[numFolds]; for(int i = 0; i < numFolds; i++) { Instances D_train = D.trainCV(numFolds,i); Instances D_test = D.testCV(numFolds,i); if (h.getDebug()) System.out.println(":- Fold ["+i+"/"+numFolds+"] -: "+MLUtils.getDatasetName(D)+"\tL="+D.classIndex()+"\tD(t:T)=("+D_train.numInstances()+":"+D_test.numInstances()+")\tLC(t:T)="+Utils.roundDouble(MLUtils.labelCardinality(D_train,D.classIndex()),2)+":"+Utils.roundDouble(MLUtils.labelCardinality(D_test,D.classIndex()),2)+")"); r_[i] = evaluateModel(h, D_train, D_test); // <-- should not run stats yet! } Result r = MLEvalUtils.combinePredictions(r_); if (h instanceof MultiTargetClassifier || isMT(D)) { r.setInfo("Type","MT-CV"); } else if (h instanceof MultiLabelClassifier) { r.setInfo("Type","ML-CV"); try { r.setInfo("Threshold",String.valueOf(Double.parseDouble(top))); } catch(Exception e) { System.err.println("[WARNING] Automatic threshold calibration not currently enabled for cross-fold validation, setting threshold = 0.5.\n"); r.setInfo("Threshold",String.valueOf(0.5)); } } r.setInfo("Verbosity",vop); r.output = Result.getStats(r, vop); // Need to reset this because of CV r.setValue("Number of training instances",D.numInstances()); r.setValue("Number of test instances",D.numInstances()); return r; }
Example 4
Source File: Evaluation.java From meka with GNU General Public License v3.0 | 4 votes |
/** * EvaluateModel - Build model 'h' on 'D_train', test it on 'D_test'. * Note that raw multi-label predictions returned in Result may not have been thresholded yet. * However, data statistics, classifier info, and running times are inpregnated into the Result here. * @param h a multi-dim. classifier * @param D_train training data * @param D_test test data * @return raw prediction data (no evaluation yet) */ public static Result evaluateModel(MultiXClassifier h, Instances D_train, Instances D_test) throws Exception { long before = System.currentTimeMillis(); // Set test data as unlabelled data, if SemisupervisedClassifier if (h instanceof SemisupervisedClassifier) { ((SemisupervisedClassifier)h).introduceUnlabelledData(MLUtils.setLabelsMissing(new Instances(D_test))); } // Train h.buildClassifier(D_train); long after = System.currentTimeMillis(); //System.out.println(":- Classifier -: "+h.getClass().getName()+": "+Arrays.toString(h.getOptions())); // Test long before_test = System.currentTimeMillis(); Result result = testClassifier(h,D_test); long after_test = System.currentTimeMillis(); result.setValue("Number of training instances",D_train.numInstances()); result.setValue("Number of test instances",D_test.numInstances()); result.setValue("Label cardinality (train set)",MLUtils.labelCardinality(D_train)); result.setValue("Label cardinality (test set)",MLUtils.labelCardinality(D_test)); result.setValue("Build Time",(after - before)/1000.0); result.setValue("Test Time",(after_test - before_test)/1000.0); result.setValue("Total Time", (after_test - before) / 1000.0); result.setInfo("Classifier",h.getClass().getName()); result.setInfo("Options",Arrays.toString(h.getOptions())); result.setInfo("Additional Info",h.toString()); result.setInfo("Dataset",MLUtils.getDatasetName(D_train)); result.setInfo("Number of labels (L)",String.valueOf(D_train.classIndex())); //result.setInfo("Maxfreq_set",MLUtils.mostCommonCombination(D_train,result.L)); String model = h.getModel(); if (model.length() > 0) result.setModel("Model",h.getModel()); return result; }
Example 5
Source File: Evaluation.java From meka with GNU General Public License v3.0 | 4 votes |
public static Result evaluateModelM(MultiXClassifier h, Instances D_train, Instances D_test, String top, String vop) throws Exception { // Train long before = System.currentTimeMillis(); /*if (h instanceof SemisupervisedClassifier) { // *NEW* for semi-supervised ((SemisupervisedClassifier)h).setUnlabelledData(MLUtils.setLabelsMissing(new Instances(D_test))); }*/ h.buildClassifier(D_train); long after = System.currentTimeMillis(); //System.out.println(":- Classifier -: "+h.getClass().getName()+": "+Arrays.toString(h.getOptions())); // Test long before_test = System.currentTimeMillis(); Result result = testClassifierM(h,D_test); long after_test = System.currentTimeMillis(); result.setValue("N_train",D_train.numInstances()); result.setValue("N_test",D_test.numInstances()); result.setValue("LCard_train",MLUtils.labelCardinality(D_train)); result.setValue("LCard_test",MLUtils.labelCardinality(D_test)); result.setValue("Build_time",(after - before)/1000.0); result.setValue("Test_time",(after_test - before_test)/1000.0); result.setValue("Total_time",(after_test - before)/1000.0); result.setInfo("Classifier_name",h.getClass().getName()); result.setInfo("Classifier_ops",Arrays.toString(h.getOptions())); result.setInfo("Classifier_info",h.toString()); result.setInfo("Dataset_name",MLUtils.getDatasetName(D_train)); //result.setInfo("Maxfreq_set",MLUtils.mostCommonCombination(D_train,result.L)); if (h instanceof MultiTargetClassifier || isMT(D_test)) { result.setInfo("Type","MT"); } else if (h instanceof MultiLabelClassifier) { result.setInfo("Type","ML"); } result.setInfo("Threshold",MLEvalUtils.getThreshold(result.predictions,D_train,top)); // <-- only relevant to ML (for now), but we'll put it in here in any case result.setInfo("Verbosity",vop); result.output = Result.getStats(result, vop); return result; }