Java Code Examples for it.unimi.dsi.Util#identity()
The following examples show how to use
it.unimi.dsi.Util#identity() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: LayeredLabelPropagation.java From fasten with Apache License 2.0 | 6 votes |
/** Creates a new instance using a specific initial permutation and specified number of threads. * * <p>If <code>exact</code> is true, the final permutation is * <em>exactly</em> the same as if you first permute the graph with <code>startPerm</code> and * then apply LLP with an {@code null} starting permutation. * * @param symGraph a symmetric, loopless graph. * @param startPerm an initial permutation of the graph, or {@code null} for no permutation. * @param numberOfThreads the number of threads to be used (0 for automatic sizing). * @param seed a random seed. * @param exact a boolean flag that forces the algorithm to run exactly. */ public LayeredLabelPropagation(final ImmutableGraph symGraph, final int[] startPerm, final int numberOfThreads, final long seed, final boolean exact) throws IOException { this.symGraph = symGraph; this.n = symGraph.numNodes(); this.startPerm = startPerm; this.seed = seed; this.r = new XoRoShiRo128PlusRandom(seed); this.exact = exact; this.label = new AtomicIntegerArray(n); this.volume = new AtomicIntegerArray(n); cumulativeOutdegrees = new EliasFanoCumulativeOutdegreeList(symGraph, symGraph.numArcs(), 1); this.gapCost = new MutableDouble(); this.updateList = Util.identity(n); simpleUncaughtExceptionHandler = new SimpleUncaughtExceptionHandler(); labelling = File.createTempFile(this.getClass().getName(), "labelling"); labelling.deleteOnExit(); this.numberOfThreads = numberOfThreads != 0 ? numberOfThreads : Runtime.getRuntime().availableProcessors(); this.canChange = new boolean[n]; this.modified = new AtomicInteger(0); this.objectiveFunction = new double[this.numberOfThreads]; }
Example 2
Source File: ReorderingBlockingQueueTest.java From BUbiNG with Apache License 2.0 | 6 votes |
@Test public void testBlocking() throws InterruptedException { for(final int size: new int[] { 10, 100, 128, 256 }) { for(final int d: new int[] { 1, 2, 3, 4 }) { final ReorderingBlockingQueue<Integer> q = new ReorderingBlockingQueue<>(size / d); final int[] perm = Util.identity(size); IntArrays.shuffle(perm, new XoRoShiRo128PlusRandom()); for(int i = perm.length; i-- != 0;) { final int t = perm[i]; new Thread() { @Override public void run() { try { q.put(Integer.valueOf(t), t); } catch (final InterruptedException e) { throw new RuntimeException(e.getMessage(), e); } } }.start(); } for(int i = 0; i < perm.length; i++) assertEquals(i, q.take().intValue()); assertEquals(0, q.size()); } } }
Example 3
Source File: LayeredLabelPropagation.java From fasten with Apache License 2.0 | 5 votes |
private void update(final double gamma) { final int n = this.n; final int[] updateList = this.updateList; modified.set(0); nextArcs = nextNode = 0; if (exact) { if (startPerm == null) Util.identity(updateList); else Util.invertPermutation(startPerm, updateList); } // Local shuffle for(int i = 0; i < n;) IntArrays.shuffle(updateList, i, Math.min(i += SHUFFLE_GRANULARITY, n), r); final ProgressLogger pl = new ProgressLogger(LOGGER); pl.expectedUpdates = n; pl.logInterval = ProgressLogger.TEN_SECONDS; pl.itemsName = "nodes"; pl.start("Starting update " + update + "..."); final Thread[] thread = new Thread[numberOfThreads]; nextArcs = nextNode = 0; for (int i = 0; i < numberOfThreads; i++) { thread[i] = new IterationThread(symGraph.copy(), gamma, i, pl); thread[i].setUncaughtExceptionHandler(simpleUncaughtExceptionHandler); thread[i].start(); } for (int i = 0; i < numberOfThreads; i++) try { thread[i].join(); } catch (final InterruptedException e) { throw new RuntimeException(e); } if (threadException != null) throw new RuntimeException(threadException); pl.done(); }
Example 4
Source File: ReorderingBlockingQueueTest.java From BUbiNG with Apache License 2.0 | 5 votes |
@Test public void testNoBlocking() throws InterruptedException { for(final int size: new int[] { 1, 10, 100, 128, 256 }) { final ReorderingBlockingQueue<Integer> q = new ReorderingBlockingQueue<>(size); final int[] perm = Util.identity(size); IntArrays.shuffle(perm, new XoRoShiRo128PlusRandom()); for(int i = perm.length; i-- != 0;) q.put(Integer.valueOf(perm[i]), perm[i]); for(int i = 0; i < perm.length; i++) assertEquals(i, q.take().intValue()); assertEquals(0, q.size()); } }
Example 5
Source File: CallGraphGenerator.java From fasten with Apache License 2.0 | 4 votes |
/** Generates <code>np</code> call graphs. Each call graph is obtained using {@link #preferentialAttachmentDAG(int, int, IntegerDistribution, RandomGenerator)} (with * specified initial graph size (<code>initialGraphSizeDistribution</code>), graph size (<code>graphSizeDistribution</code>), outdegree distribution (<code>outdegreeDistribution</code>). * Then a dependency DAG is generated between the call graphs, once more using {@link #preferentialAttachmentDAG(int, int, IntegerDistribution, RandomGenerator)} (this * time the initial graph size is 1, whereas the outdegree distribution is <code>outdegreeDistribution</code>). * Then to each node of each call graph a new set of outgoing arcs is generated (their number is chosen using <code>externalOutdegreeDistribution</code>): the target * call graph is generated using the indegree distribution of the dependency DAG; the target node is chosen according to the reverse indegree distribution within the revision call graph. * * @param np number of revision call graphs to be generated. * @param graphSizeDistribution the distribution of the graph sizes (number of functions per call graph). * @param initialGraphSizeDistribution the distribution of the initial graph sizes (the initial independent set from which the preferential attachment starts). * @param outdegreeDistribution the distribution of internal outdegrees (number of internal calls per function). * @param externalOutdegreeDistribution the distribution of external outdegrees (number of external calls per function). * @param depExponent exponent of the Zipf distribution used to establish the dependencies between call graphs. * @param random the random object used for the generation. */ public void generate(final int np, final IntegerDistribution graphSizeDistribution, final IntegerDistribution initialGraphSizeDistribution, final IntegerDistribution outdegreeDistribution, final IntegerDistribution externalOutdegreeDistribution, final IntegerDistribution dependencyOutdegreeDistribution, final RandomGenerator random) { rcgs = new ArrayListMutableGraph[np]; nodePermutation = new int[np][]; final FenwickTree[] td = new FenwickTree[np]; deps = new IntOpenHashSet[np]; source2Targets = new ObjectOpenCustomHashSet[np]; // Generate rcg of the np revisions, and the corresponding reverse preferential distribution; cumsize[i] is the sum of all nodes in packages <i for ( int i = 0; i < np; i++) { deps[i] = new IntOpenHashSet(); final int n = graphSizeDistribution.sample(); final int n0 = Math.min(initialGraphSizeDistribution.sample(), n); rcgs[i] = preferentialAttachmentDAG(n, n0, outdegreeDistribution, random); td[i] = getPreferentialDistribution(rcgs[i].immutableView(), true); nodePermutation[i] = Util.identity(n); Collections.shuffle(IntArrayList.wrap(nodePermutation[i]), new Random(random.nextLong())); } // Generate the dependency DAG between revisions using preferential attachment starting from 1 node final ArrayListMutableGraph depDAG = preferentialAttachmentDAG(np, 1, dependencyOutdegreeDistribution, random); // For each source package, generate function calls so to cover all dependencies for (int sourcePackage = 0; sourcePackage < np; sourcePackage++) { source2Targets[sourcePackage] = new ObjectOpenCustomHashSet<>(IntArrays.HASH_STRATEGY); final int outdegree = depDAG.outdegree(sourcePackage); if (outdegree == 0) continue; // No calls needed (I'm kinda busy) final int numFuncs = rcgs[sourcePackage].numNodes(); final int[] externalArcs = new int[numFuncs]; int allExternalArcs = 0; // We decide how many calls to dispatch from each function for (int sourceNode = 0; sourceNode < numFuncs; sourceNode++) allExternalArcs += (externalArcs[sourceNode] = externalOutdegreeDistribution.sample()); // We create a global list of external successors by shuffling final int[] targetPackage = new int[allExternalArcs]; final int[] succ = depDAG.successorArray(sourcePackage); for(int i = 0; i < outdegree; i++) deps[sourcePackage].add(succ[i]); for(int i = 0; i < allExternalArcs; i++) targetPackage[i] = succ[i % outdegree]; MathArrays.shuffle(targetPackage, random); for (int sourceNode = allExternalArcs = 0; sourceNode < numFuncs; sourceNode++) { final int externalOutdegree = externalArcs[sourceNode]; for (int t = 0; t < externalOutdegree; t++) { final int targetNode = td[targetPackage[allExternalArcs + t]].sample(random) - 1; source2Targets[sourcePackage].add(new int[] { sourceNode, targetPackage[allExternalArcs + t], targetNode }); } allExternalArcs += externalOutdegree; } } }