Java Code Examples for org.deeplearning4j.eval.Evaluation#accuracy()
The following examples show how to use
org.deeplearning4j.eval.Evaluation#accuracy() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: TrainUtil.java From FancyBing with GNU General Public License v3.0 | 6 votes |
public static double evaluate(Model model, int outputNum, MultiDataSetIterator testData, int topN, int batchSize) { log.info("Evaluate model...."); Evaluation clsEval = new Evaluation(createLabels(outputNum), topN); RegressionEvaluation valueRegEval1 = new RegressionEvaluation(1); int count = 0; long begin = 0; long consume = 0; while(testData.hasNext()){ MultiDataSet ds = testData.next(); begin = System.nanoTime(); INDArray[] output = ((ComputationGraph) model).output(false, ds.getFeatures()); consume += System.nanoTime() - begin; clsEval.eval(ds.getLabels(0), output[0]); valueRegEval1.eval(ds.getLabels(1), output[1]); count++; } String stats = clsEval.stats(); int pos = stats.indexOf("==="); stats = "\n" + stats.substring(pos); log.info(stats); log.info(valueRegEval1.stats()); testData.reset(); log.info("Evaluate time: " + consume + " count: " + (count * batchSize) + " average: " + ((float) consume/(count*batchSize)/1000)); return clsEval.accuracy(); }
Example 2
Source File: AccuracyCalculator.java From Java-Machine-Learning-for-Computer-Vision with MIT License | 5 votes |
@Override public double calculateScore(MultiLayerNetwork network) { Evaluation evaluate = network.evaluate(dataSetIterator); double accuracy = evaluate.accuracy(); log.info("Accuracy at iteration" + i++ + " " + accuracy); return 1 - evaluate.accuracy(); }
Example 3
Source File: DataSetAccuracyLossCalculator.java From dl4j-tutorials with MIT License | 5 votes |
@Override public double calculateScore(MultiLayerNetwork network) { double sum = 0; for (DataSetIterator dataSetIterator : dataSetIterators) { Evaluation eval = network.evaluate(dataSetIterator); sum += eval.accuracy(); } return sum / dataSetIterators.length; }
Example 4
Source File: ParallelWrapperTest.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testParallelWrapperRun() throws Exception { int nChannels = 1; int outputNum = 10; // for GPU you usually want to have higher batchSize int batchSize = 128; int nEpochs = 5; int seed = 123; log.info("Load data...."); DataSetIterator mnistTrain = new EarlyTerminationDataSetIterator(new MnistDataSetIterator(batchSize, true, 12345), 15); DataSetIterator mnistTest = new EarlyTerminationDataSetIterator(new MnistDataSetIterator(batchSize, false, 12345), 4); assertTrue(mnistTrain.hasNext()); val t0 = mnistTrain.next(); log.info("F: {}; L: {};", t0.getFeatures().shape(), t0.getLabels().shape()); log.info("Build model...."); MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder().seed(seed) .l2(0.0005) //.learningRateDecayPolicy(LearningRatePolicy.Inverse).lrPolicyDecayRate(0.001).lrPolicyPower(0.75) .weightInit(WeightInit.XAVIER) .updater(new Nesterovs(0.01, 0.9)).list() .layer(0, new ConvolutionLayer.Builder(5, 5) //nIn and nOut specify depth. nIn here is the nChannels and nOut is the number of filters to be applied .nIn(nChannels).stride(1, 1).nOut(20).activation(Activation.IDENTITY).build()) .layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2) .stride(2, 2).build()) .layer(2, new ConvolutionLayer.Builder(5, 5) //Note that nIn needed be specified in later layers .stride(1, 1).nOut(50).activation(Activation.IDENTITY).build()) .layer(3, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2) .stride(2, 2).build()) .layer(4, new DenseLayer.Builder().activation(Activation.RELU).nOut(500).build()) .layer(5, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD) .nOut(outputNum).activation(Activation.SOFTMAX).build()) .setInputType(InputType.convolutionalFlat(28, 28, nChannels)); MultiLayerConfiguration conf = builder.build(); MultiLayerNetwork model = new MultiLayerNetwork(conf); model.init(); // ParallelWrapper will take care of load balancing between GPUs. ParallelWrapper wrapper = new ParallelWrapper.Builder(model) // DataSets prefetching options. Set this value with respect to number of actual devices .prefetchBuffer(24) // set number of workers equal or higher then number of available devices. x1-x2 are good values to start with .workers(2) // rare averaging improves performance, but might reduce model accuracy .averagingFrequency(3) // if set to TRUE, on every averaging model score will be reported .reportScoreAfterAveraging(true) // optinal parameter, set to false ONLY if your system has support P2P memory access across PCIe (hint: AWS do not support P2P) .build(); log.info("Train model...."); model.setListeners(new ScoreIterationListener(100)); long timeX = System.currentTimeMillis(); // optionally you might want to use MultipleEpochsIterator instead of manually iterating/resetting over your iterator //MultipleEpochsIterator mnistMultiEpochIterator = new MultipleEpochsIterator(nEpochs, mnistTrain); for (int i = 0; i < nEpochs; i++) { long time1 = System.currentTimeMillis(); // Please note: we're feeding ParallelWrapper with iterator, not model directly // wrapper.fit(mnistMultiEpochIterator); wrapper.fit(mnistTrain); long time2 = System.currentTimeMillis(); log.info("*** Completed epoch {}, time: {} ***", i, (time2 - time1)); } long timeY = System.currentTimeMillis(); log.info("*** Training complete, time: {} ***", (timeY - timeX)); Evaluation eval = model.evaluate(mnistTest); log.info(eval.stats()); mnistTest.reset(); double acc = eval.accuracy(); assertTrue(String.valueOf(acc), acc > 0.5); wrapper.shutdown(); }
Example 5
Source File: TestSetAccuracyScoreFunction.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Override public double score(MultiLayerNetwork net, DataSetIterator iterator) { Evaluation e = net.evaluate(iterator); return e.accuracy(); }
Example 6
Source File: TestSetAccuracyScoreFunction.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Override public double score(ComputationGraph graph, DataSetIterator iterator) { Evaluation e = graph.evaluate(iterator); return e.accuracy(); }
Example 7
Source File: TestSetAccuracyScoreFunction.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Override public double score(ComputationGraph graph, MultiDataSetIterator iterator) { Evaluation e = graph.evaluate(iterator); return e.accuracy(); }