Java Code Examples for org.jpmml.converter.ValueUtil#isZero()
The following examples show how to use
org.jpmml.converter.ValueUtil#isZero() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: RegTree.java From jpmml-xgboost with GNU Affero General Public License v3.0 | 5 votes |
public boolean isEmpty(){ Node node = this.nodes[0]; if(!node.is_leaf()){ return false; } else { Float value = node.leaf_value(); return ValueUtil.isZero(value); } }
Example 2
Source File: PreProcessEncoder.java From jpmml-r with GNU Affero General Public License v3.0 | 5 votes |
private Expression encodeExpression(FieldName name, Expression expression){ List<Double> ranges = this.ranges.get(name); if(ranges != null){ Double min = ranges.get(0); Double max = ranges.get(1); if(!ValueUtil.isZero(min)){ expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, expression, PMMLUtil.createConstant(min)); } // End if if(!ValueUtil.isOne(max - min)){ expression = PMMLUtil.createApply(PMMLFunctions.DIVIDE, expression, PMMLUtil.createConstant(max - min)); } } Double mean = this.mean.get(name); if(mean != null && !ValueUtil.isZero(mean)){ expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, expression, PMMLUtil.createConstant(mean)); } Double std = this.std.get(name); if(std != null && !ValueUtil.isOne(std)){ expression = PMMLUtil.createApply(PMMLFunctions.DIVIDE, expression, PMMLUtil.createConstant(std)); } Double median = this.median.get(name); if(median != null){ expression = PMMLUtil.createApply(PMMLFunctions.IF) .addExpressions(PMMLUtil.createApply(PMMLFunctions.ISNOTMISSING, new FieldRef(name))) .addExpressions(expression, PMMLUtil.createConstant(median)); } return expression; }
Example 3
Source File: StandardScalerModelConverter.java From jpmml-sparkml with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(SparkMLEncoder encoder){ StandardScalerModel transformer = getTransformer(); Vector mean = transformer.mean(); Vector std = transformer.std(); boolean withMean = transformer.getWithMean(); boolean withStd = transformer.getWithStd(); List<Feature> features = encoder.getFeatures(transformer.getInputCol()); if(withMean){ SchemaUtil.checkSize(mean.size(), features); } // End if if(withStd){ SchemaUtil.checkSize(std.size(), features); } List<Feature> result = new ArrayList<>(); for(int i = 0, length = features.size(); i < length; i++){ Feature feature = features.get(i); FieldName name = formatName(transformer, i, length); Expression expression = null; if(withMean){ double meanValue = mean.apply(i); if(!ValueUtil.isZero(meanValue)){ ContinuousFeature continuousFeature = feature.toContinuousFeature(); expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, continuousFeature.ref(), PMMLUtil.createConstant(meanValue)); } } // End if if(withStd){ double stdValue = std.apply(i); if(!ValueUtil.isOne(stdValue)){ Double factor = (1d / stdValue); if(expression != null){ expression = PMMLUtil.createApply(PMMLFunctions.MULTIPLY, expression, PMMLUtil.createConstant(factor)); } else { feature = new ProductFeature(encoder, feature, factor){ @Override public ContinuousFeature toContinuousFeature(){ Supplier<Apply> applySupplier = () -> { Feature feature = getFeature(); Number factor = getFactor(); return PMMLUtil.createApply(PMMLFunctions.MULTIPLY, (feature.toContinuousFeature()).ref(), PMMLUtil.createConstant(factor)); }; return toContinuousFeature(name, DataType.DOUBLE, applySupplier); } }; } } } // End if if(expression != null){ DerivedField derivedField = encoder.createDerivedField(name, OpType.CONTINUOUS, DataType.DOUBLE, expression); result.add(new ContinuousFeature(encoder, derivedField)); } else { result.add(feature); } } return result; }
Example 4
Source File: RobustScaler.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ Boolean withCentering = getWithCentering(); Boolean withScaling = getWithScaling(); List<? extends Number> center = (withCentering ? getCenter() : null); List<? extends Number> scale = (withScaling ? getScale() : null); if(center == null && scale == null){ return features; } ClassDictUtil.checkSize(features, center, scale); List<Feature> result = new ArrayList<>(); for(int i = 0; i < features.size(); i++){ Feature feature = features.get(i); Number centerValue = (withCentering ? center.get(i) : 0d); Number scaleValue = (withScaling ? scale.get(i) : 1d); if(ValueUtil.isZero(centerValue) && ValueUtil.isOne(scaleValue)){ result.add(feature); continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "($name - center) / scale" Expression expression = continuousFeature.ref(); if(!ValueUtil.isZero(centerValue)){ expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, expression, PMMLUtil.createConstant(centerValue)); } // End if if(!ValueUtil.isOne(scaleValue)){ expression = PMMLUtil.createApply(PMMLFunctions.DIVIDE, expression, PMMLUtil.createConstant(scaleValue)); } DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("robust_scaler", continuousFeature), expression); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }
Example 5
Source File: MinMaxScaler.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ List<? extends Number> min = getMin(); List<? extends Number> scale = getScale(); ClassDictUtil.checkSize(features, min, scale); List<Feature> result = new ArrayList<>(); for(int i = 0; i < features.size(); i++){ Feature feature = features.get(i); Number minValue = min.get(i); Number scaleValue = scale.get(i); if(ValueUtil.isOne(scaleValue) && ValueUtil.isZero(minValue)){ result.add(feature); continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "($name * scale) + min" Expression expression = continuousFeature.ref(); if(!ValueUtil.isOne(scaleValue)){ expression = PMMLUtil.createApply(PMMLFunctions.MULTIPLY, expression, PMMLUtil.createConstant(scaleValue)); } // End if if(!ValueUtil.isZero(minValue)){ expression = PMMLUtil.createApply(PMMLFunctions.ADD, expression, PMMLUtil.createConstant(minValue)); } DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("mix_max_scaler", continuousFeature), expression); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }
Example 6
Source File: StandardScaler.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ Boolean withMean = getWithMean(); Boolean withStd = getWithStd(); List<? extends Number> mean = (withMean ? getMean() : null); List<? extends Number> std = (withStd ? getStd() : null); if(mean == null && std == null){ return features; } ClassDictUtil.checkSize(features, mean, std); List<Feature> result = new ArrayList<>(); for(int i = 0; i < features.size(); i++){ Feature feature = features.get(i); Number meanValue = (withMean ? mean.get(i) : 0d); Number stdValue = (withStd ? std.get(i) : 1d); if(ValueUtil.isZero(meanValue) && ValueUtil.isOne(stdValue)){ result.add(feature); continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "($name - mean) / std" Expression expression = continuousFeature.ref(); if(!ValueUtil.isZero(meanValue)){ expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, expression, PMMLUtil.createConstant(meanValue)); } // End if if(!ValueUtil.isOne(stdValue)){ expression = PMMLUtil.createApply(PMMLFunctions.DIVIDE, expression, PMMLUtil.createConstant(stdValue)); } DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("standard_scaler", continuousFeature), expression); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }
Example 7
Source File: LabelBinarizer.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 4 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ List<?> classes = getClasses(); Number negLabel = getNegLabel(); Number posLabel = getPosLabel(); ClassDictUtil.checkSize(1, features); Feature feature = features.get(0); List<Object> categories = new ArrayList<>(); categories.addAll(classes); List<Number> labelCategories = new ArrayList<>(); labelCategories.add(negLabel); labelCategories.add(posLabel); List<Feature> result = new ArrayList<>(); classes = prepareClasses(classes); for(int i = 0; i < classes.size(); i++){ Object value = classes.get(i); if(ValueUtil.isZero(negLabel) && ValueUtil.isOne(posLabel)){ result.add(new BinaryFeature(encoder, feature, value)); } else { // "($name == value) ? pos_label : neg_label" Apply apply = PMMLUtil.createApply(PMMLFunctions.IF) .addExpressions(PMMLUtil.createApply(PMMLFunctions.EQUAL, feature.ref(), PMMLUtil.createConstant(value, feature.getDataType()))) .addExpressions(PMMLUtil.createConstant(posLabel), PMMLUtil.createConstant(negLabel)); FieldName name = (classes.size() > 1 ? FeatureUtil.createName("label_binarizer", feature, i) : FeatureUtil.createName("label_binarizer", feature)); DerivedField derivedField = encoder.createDerivedField(name, apply); result.add(new CategoricalFeature(encoder, derivedField, labelCategories)); } } encoder.toCategorical(feature.getName(), categories); return result; }
Example 8
Source File: SVMConverter.java From jpmml-r with GNU Affero General Public License v3.0 | 4 votes |
private void scaleFeatures(RExpEncoder encoder){ RGenericVector svm = getObject(); RDoubleVector sv = svm.getDoubleElement("SV"); RBooleanVector scaled = svm.getBooleanElement("scaled"); RGenericVector xScale = svm.getGenericElement("x.scale"); RStringVector rowNames = sv.dimnames(0); RStringVector columnNames = sv.dimnames(1); List<Feature> features = encoder.getFeatures(); if((scaled.size() != columnNames.size()) || (scaled.size() != features.size())){ throw new IllegalArgumentException(); } RDoubleVector xScaledCenter = xScale.getDoubleElement("scaled:center"); RDoubleVector xScaledScale = xScale.getDoubleElement("scaled:scale"); for(int i = 0; i < columnNames.size(); i++){ String columnName = columnNames.getValue(i); if(!scaled.getValue(i)){ continue; } Feature feature = features.get(i); Double center = xScaledCenter.getElement(columnName); Double scale = xScaledScale.getElement(columnName); if(ValueUtil.isZero(center) && ValueUtil.isOne(scale)){ continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); Expression expression = continuousFeature.ref(); if(!ValueUtil.isZero(center)){ expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, expression, PMMLUtil.createConstant(center)); } // End if if(!ValueUtil.isOne(scale)){ expression = PMMLUtil.createApply(PMMLFunctions.DIVIDE, expression, PMMLUtil.createConstant(scale)); } DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("scale", feature), OpType.CONTINUOUS, DataType.DOUBLE, expression); features.set(i, new ContinuousFeature(encoder, derivedField)); } }
Example 9
Source File: PCA.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 2 votes |
@Override public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){ int[] shape = getComponentsShape(); int numberOfComponents = shape[0]; int numberOfFeatures = shape[1]; List<? extends Number> components = getComponents(); List<? extends Number> mean = getMean(); ClassDictUtil.checkSize(numberOfFeatures, features, mean); Boolean whiten = getWhiten(); List<? extends Number> explainedVariance = (whiten ? getExplainedVariance() : null); ClassDictUtil.checkSize(numberOfComponents, explainedVariance); String id = "pca@" + String.valueOf(PCA.SEQUENCE.getAndIncrement()); List<Feature> result = new ArrayList<>(); for(int i = 0; i < numberOfComponents; i++){ List<? extends Number> component = CMatrixUtil.getRow(components, numberOfComponents, numberOfFeatures, i); Apply apply = PMMLUtil.createApply(PMMLFunctions.SUM); for(int j = 0; j < numberOfFeatures; j++){ Feature feature = features.get(j); Number meanValue = mean.get(j); Number componentValue = component.get(j); if(ValueUtil.isZero(meanValue) && ValueUtil.isOne(componentValue)){ apply.addExpressions(feature.ref()); continue; } ContinuousFeature continuousFeature = feature.toContinuousFeature(); // "($name[i] - mean[i]) * component[i]" Expression expression = continuousFeature.ref(); if(!ValueUtil.isZero(meanValue)){ expression = PMMLUtil.createApply(PMMLFunctions.SUBTRACT, expression, PMMLUtil.createConstant(meanValue)); } // End if if(!ValueUtil.isOne(componentValue)){ expression = PMMLUtil.createApply(PMMLFunctions.MULTIPLY, expression, PMMLUtil.createConstant(componentValue)); } apply.addExpressions(expression); } if(whiten){ Number explainedVarianceValue = explainedVariance.get(i); if(!ValueUtil.isOne(explainedVarianceValue)){ apply = PMMLUtil.createApply(PMMLFunctions.DIVIDE, apply, PMMLUtil.createConstant(Math.sqrt(ValueUtil.asDouble(explainedVarianceValue)))); } } DerivedField derivedField = encoder.createDerivedField(FieldName.create(id + "[" + String.valueOf(i) + "]"), apply); result.add(new ContinuousFeature(encoder, derivedField)); } return result; }