burlap.behavior.singleagent.planning.deterministic.DeterministicPlanner Java Examples
The following examples show how to use
burlap.behavior.singleagent.planning.deterministic.DeterministicPlanner.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: TestPlanning.java From burlap with Apache License 2.0 | 5 votes |
@Test public void testBFS() { GridWorldState initialState = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, 0, "loc0")); DeterministicPlanner planner = new BFS(this.domain, this.goalCondition, this.hashingFactory); planner.planFromState(initialState); Policy p = new SDPlannerPolicy(planner); Episode analysis = rollout(p, initialState, domain.getModel()); this.evaluateEpisode(analysis, true); }
Example #2
Source File: TestPlanning.java From burlap with Apache License 2.0 | 5 votes |
@Test public void testDFS() { GridWorldState initialState = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, 0, "loc0")); DeterministicPlanner planner = new DFS(this.domain, this.goalCondition, this.hashingFactory, -1 , true); planner.planFromState(initialState); Policy p = new SDPlannerPolicy(planner); Episode analysis = rollout(p, initialState, domain.getModel()); this.evaluateEpisode(analysis); }
Example #3
Source File: TestPlanning.java From burlap with Apache License 2.0 | 5 votes |
@Test public void testAStar() { GridWorldState initialState = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, 0, "loc0")); Heuristic mdistHeuristic = new Heuristic() { @Override public double h(State s) { GridAgent agent = ((GridWorldState)s).agent; GridLocation location = ((GridWorldState)s).locations.get(0); //get agent position int ax = agent.x; int ay = agent.y; //get location position int lx = location.x; int ly = location.y; //compute Manhattan distance double mdist = Math.abs(ax-lx) + Math.abs(ay-ly); return -mdist; } }; //provide A* the heuristic as well as the reward function so that it can keep //track of the actual cost DeterministicPlanner planner = new AStar(domain, goalCondition, hashingFactory, mdistHeuristic); planner.planFromState(initialState); Policy p = new SDPlannerPolicy(planner); Episode analysis = PolicyUtils.rollout(p, initialState, domain.getModel()); this.evaluateEpisode(analysis, true); }
Example #4
Source File: BasicBehavior.java From burlap_examples with MIT License | 4 votes |
public void AStarExample(String outputPath){ Heuristic mdistHeuristic = new Heuristic() { public double h(State s) { GridAgent a = ((GridWorldState)s).agent; double mdist = Math.abs(a.x-10) + Math.abs(a.y-10); return -mdist; } }; DeterministicPlanner planner = new AStar(domain, goalCondition, hashingFactory, mdistHeuristic); Policy p = planner.planFromState(initialState); PolicyUtils.rollout(p, initialState, domain.getModel()).write(outputPath + "astar"); }
Example #5
Source File: BasicBehavior.java From burlap_examples with MIT License | 3 votes |
public void BFSExample(String outputPath){ DeterministicPlanner planner = new BFS(domain, goalCondition, hashingFactory); Policy p = planner.planFromState(initialState); PolicyUtils.rollout(p, initialState, domain.getModel()).write(outputPath + "bfs"); }
Example #6
Source File: BasicBehavior.java From burlap_examples with MIT License | 3 votes |
public void DFSExample(String outputPath){ DeterministicPlanner planner = new DFS(domain, goalCondition, hashingFactory); Policy p = planner.planFromState(initialState); PolicyUtils.rollout(p, initialState, domain.getModel()).write(outputPath + "dfs"); }