Java Code Examples for no.uib.cipr.matrix.DenseMatrix#numRows()
The following examples show how to use
no.uib.cipr.matrix.DenseMatrix#numRows() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: LinkedSparseMatrixTest.java From matrix-toolkits-java with GNU Lesser General Public License v3.0 | 6 votes |
public void ignoredTimedTransMult() { Stopwatch watch = Stopwatch.createUnstarted(); DenseMatrix dense = new DenseMatrix(1000, 1000); int[][] nz = Utilities.getRowPattern(dense.numRows(), dense.numColumns(), 100); Utilities.rowPopulate(dense, nz); log.info("created matrices"); Matrix sparse = new LinkedSparseMatrix(dense.numRows(), dense.numColumns()); sparse.set(dense); for (Matrix m : Lists.newArrayList(dense, sparse)) { log.info("starting " + m.getClass()); Matrix t = new DenseMatrix(m); Matrix o = new DenseMatrix(dense.numRows(), dense.numColumns()); log.info("warming up " + m.getClass() + " " + o.getClass()); for (int i = 0; i < 10; i++) m.transAmult(t, o); log.info("starting " + m.getClass() + " " + o.getClass()); watch.start(); for (int i = 0; i < 100; i++) m.transAmult(t, o); watch.stop(); log.info(m.getClass() + " " + o.getClass() + " " + watch); } }
Example 2
Source File: LinkedSparseMatrixTest.java From matrix-toolkits-java with GNU Lesser General Public License v3.0 | 5 votes |
public void ignoredTimedMult() { Stopwatch watch = Stopwatch.createUnstarted(); DenseMatrix dense = new DenseMatrix(1000, 1000); int[][] nz = Utilities.getRowPattern(dense.numRows(), dense.numColumns(), 100); Utilities.rowPopulate(dense, nz); log.info("created matrices"); Matrix sparse = new LinkedSparseMatrix(dense.numRows(), dense.numColumns()); sparse.set(dense); for (Matrix m : Lists.newArrayList(dense, sparse)) { log.info("starting " + m.getClass()); Matrix t = new DenseMatrix(m); t.transpose(); Matrix o = new DenseMatrix(dense.numRows(), dense.numColumns()); log.info("warming up " + m.getClass() + " " + o.getClass()); for (int i = 0; i < 10; i++) m.mult(t, o); log.info("starting " + m.getClass() + " " + o.getClass()); watch.start(); for (int i = 0; i < 100; i++) m.mult(t, o); watch.stop(); log.info(m.getClass() + " " + o.getClass() + " " + watch); } }
Example 3
Source File: MatrixTools.java From systemsgenetics with GNU General Public License v3.0 | 5 votes |
public static DenseDoubleMatrix2D toDenseDoubleMatrix(DenseMatrix matrix) { DenseDoubleMatrix2D matrix2D = new DenseDoubleMatrix2D(matrix.numRows(), matrix.numColumns()); for(int c = 0; c<matrix.numColumns(); c++){ for(int r = 0; r<matrix.numRows(); r++){ matrix2D.setQuick(r,c, matrix.get(r, c)); } } return matrix2D; }
Example 4
Source File: AMG.java From matrix-toolkits-java with GNU Lesser General Public License v3.0 | 4 votes |
public void setMatrix(Matrix A) { List<CompRowMatrix> Al = new LinkedList<CompRowMatrix>(); List<CompColMatrix> Il = new LinkedList<CompColMatrix>(); Al.add(new CompRowMatrix(A)); for (int k = 0; Al.get(k).numRows() > min; ++k) { CompRowMatrix Af = Al.get(k); double eps = 0.08 * Math.pow(0.5, k); // Create the aggregates Aggregator aggregator = new Aggregator(Af, eps); // If no aggregates were created, no interpolation operator will be // created, and the setup phase stops if (aggregator.getAggregates().isEmpty()) break; // Create an interpolation operator using smoothing. This also // creates the Galerkin operator Interpolator sa = new Interpolator(aggregator, Af, omega); Al.add(sa.getGalerkinOperator()); Il.add(sa.getInterpolationOperator()); } // Copy to array storage m = Al.size(); if (m == 0) throw new RuntimeException("Matrix too small for AMG"); I = new CompColMatrix[m - 1]; this.A = new CompRowMatrix[m - 1]; Il.toArray(I); for (int i = 0; i < Al.size() - 1; ++i) this.A[i] = Al.get(i); // Create a LU decomposition of the smallest Galerkin matrix DenseMatrix Ac = new DenseMatrix(Al.get(Al.size() - 1)); lu = new DenseLU(Ac.numRows(), Ac.numColumns()); lu.factor(Ac); // Allocate vectors at each level u = new DenseVector[m]; f = new DenseVector[m]; r = new DenseVector[m]; for (int k = 0; k < m; ++k) { int n = Al.get(k).numRows(); u[k] = new DenseVector(n); f[k] = new DenseVector(n); r[k] = new DenseVector(n); } // Set up the SSOR relaxation schemes preM = new SSOR[m - 1]; postM = new SSOR[m - 1]; for (int k = 0; k < m - 1; ++k) { CompRowMatrix Ak = this.A[k]; preM[k] = new SSOR(Ak, reverse, omegaPreF, omegaPreR); postM[k] = new SSOR(Ak, reverse, omegaPostF, omegaPostR); preM[k].setMatrix(Ak); postM[k].setMatrix(Ak); } }