Java Code Examples for meka.classifiers.multilabel.Evaluation#cvModel()
The following examples show how to use
meka.classifiers.multilabel.Evaluation#cvModel() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: CrossValidate.java From meka with GNU General Public License v3.0 | 6 votes |
public static void main(String[] args) throws Exception { if (args.length != 1) throw new IllegalArgumentException("Required arguments: <dataset>"); System.out.println("Loading data: " + args[0]); Instances data = DataSource.read(args[0]); MLUtils.prepareData(data); int numFolds = 10; System.out.println("Cross-validate BR classifier using " + numFolds + " folds"); BR classifier = new BR(); // further configuration of classifier String top = "PCut1"; String vop = "3"; Result result = Evaluation.cvModel(classifier, data, numFolds, top, vop); System.out.println(result); }
Example 2
Source File: MicroCurve.java From meka with GNU General Public License v3.0 | 6 votes |
public static void main(String[] args) throws Exception { if (args.length != 1) throw new IllegalArgumentException("Required arguments: <dataset>"); System.out.println("Loading data: " + args[0]); Instances data = DataSource.read(args[0]); MLUtils.prepareData(data); System.out.println("Cross-validate BR classifier"); BR classifier = new BR(); // further configuration of classifier String top = "PCut1"; String vop = "3"; Result result = Evaluation.cvModel(classifier, data, 10, top, vop); JFrame frame = new JFrame("Micro curve"); frame.setDefaultCloseOperation(JDialog.EXIT_ON_CLOSE); frame.getContentPane().setLayout(new BorderLayout()); Instances performance = (Instances) result.getMeasurement(CURVE_DATA_MICRO); try { VisualizePanel panel = createPanel(performance); frame.getContentPane().add(panel, BorderLayout.CENTER); } catch (Exception ex) { System.err.println("Failed to create plot!"); ex.printStackTrace(); } frame.setSize(800, 600); frame.setLocationRelativeTo(null); frame.setVisible(true); }
Example 3
Source File: ROC.java From meka with GNU General Public License v3.0 | 5 votes |
public static void main(String[] args) throws Exception { if (args.length != 1) throw new IllegalArgumentException("Required arguments: <dataset>"); System.out.println("Loading data: " + args[0]); Instances data = DataSource.read(args[0]); MLUtils.prepareData(data); System.out.println("Cross-validate BR classifier"); BR classifier = new BR(); // further configuration of classifier String top = "PCut1"; String vop = "3"; Result result = Evaluation.cvModel(classifier, data, 10, top, vop); JFrame frame = new JFrame("ROC"); frame.setDefaultCloseOperation(JDialog.EXIT_ON_CLOSE); frame.getContentPane().setLayout(new BorderLayout()); JTabbedPane tabbed = new JTabbedPane(); frame.getContentPane().add(tabbed, BorderLayout.CENTER); Instances[] curves = (Instances[]) result.getMeasurement(CURVE_DATA); for (int i = 0; i < curves.length; i++) { try { ThresholdVisualizePanel panel = createPanel(curves[i], "Label " + i); tabbed.addTab("" + i, panel); } catch (Exception ex) { System.err.println("Failed to create plot for label " + i); ex.printStackTrace(); } } frame.setSize(800, 600); frame.setLocationRelativeTo(null); frame.setVisible(true); }
Example 4
Source File: MacroCurve.java From meka with GNU General Public License v3.0 | 5 votes |
public static void main(String[] args) throws Exception { if (args.length != 1) throw new IllegalArgumentException("Required arguments: <dataset>"); System.out.println("Loading data: " + args[0]); Instances data = DataSource.read(args[0]); MLUtils.prepareData(data); System.out.println("Cross-validate BR classifier"); BR classifier = new BR(); // further configuration of classifier String top = "PCut1"; String vop = "3"; Result result = Evaluation.cvModel(classifier, data, 10, top, vop); JFrame frame = new JFrame("Macro curve"); frame.setDefaultCloseOperation(JDialog.EXIT_ON_CLOSE); frame.getContentPane().setLayout(new BorderLayout()); Instances performance = (Instances) result.getMeasurement(CURVE_DATA_MACRO); try { VisualizePanel panel = createPanel(performance); frame.getContentPane().add(panel, BorderLayout.CENTER); } catch (Exception ex) { System.err.println("Failed to create plot!"); ex.printStackTrace(); } frame.setSize(800, 600); frame.setLocationRelativeTo(null); frame.setVisible(true); }
Example 5
Source File: PrecisionRecall.java From meka with GNU General Public License v3.0 | 5 votes |
public static void main(String[] args) throws Exception { if (args.length != 1) throw new IllegalArgumentException("Required arguments: <dataset>"); System.out.println("Loading data: " + args[0]); Instances data = DataSource.read(args[0]); MLUtils.prepareData(data); System.out.println("Cross-validate BR classifier"); BR classifier = new BR(); // further configuration of classifier String top = "PCut1"; String vop = "3"; Result result = Evaluation.cvModel(classifier, data, 10, top, vop); JFrame frame = new JFrame("Precision-recall"); frame.setDefaultCloseOperation(JDialog.EXIT_ON_CLOSE); frame.getContentPane().setLayout(new BorderLayout()); JTabbedPane tabbed = new JTabbedPane(); frame.getContentPane().add(tabbed, BorderLayout.CENTER); Instances[] curves = (Instances[]) result.getMeasurement(CURVE_DATA); for (int i = 0; i < curves.length; i++) { try { ThresholdVisualizePanel panel = createPanel(curves[i], "Label " + i); tabbed.addTab("" + i, panel); } catch (Exception ex) { System.err.println("Failed to create plot for label " + i); ex.printStackTrace(); } } frame.setSize(800, 600); frame.setLocationRelativeTo(null); frame.setVisible(true); }