Java Code Examples for org.deeplearning4j.models.embeddings.loader.WordVectorSerializer#loadTxt()
The following examples show how to use
org.deeplearning4j.models.embeddings.loader.WordVectorSerializer#loadTxt() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: TSNEVisualizationExample.java From Java-Deep-Learning-Cookbook with MIT License | 6 votes |
public static void main(String[] args) throws IOException { Nd4j.setDataType(DataBuffer.Type.DOUBLE); List<String> cacheList = new ArrayList<>(); File file = new File("words.txt"); String outputFile = "tsne-standard-coords.csv"; Pair<InMemoryLookupTable,VocabCache> vectors = WordVectorSerializer.loadTxt(file); VocabCache cache = vectors.getSecond(); INDArray weights = vectors.getFirst().getSyn0(); for(int i=0;i<cache.numWords();i++){ cacheList.add(cache.wordAtIndex(i)); } BarnesHutTsne tsne = new BarnesHutTsne.Builder() .setMaxIter(100) .theta(0.5) .normalize(false) .learningRate(500) .useAdaGrad(false) .build(); tsne.fit(weights); tsne.saveAsFile(cacheList,outputFile); }
Example 2
Source File: TSNEVisualizationExample.java From Java-Deep-Learning-Cookbook with MIT License | 6 votes |
public static void main(String[] args) throws IOException { Nd4j.setDataType(DataBuffer.Type.DOUBLE); List<String> cacheList = new ArrayList<>(); File file = new File("words.txt"); String outputFile = "tsne-standard-coords.csv"; Pair<InMemoryLookupTable,VocabCache> vectors = WordVectorSerializer.loadTxt(file); VocabCache cache = vectors.getSecond(); INDArray weights = vectors.getFirst().getSyn0(); for(int i=0;i<cache.numWords();i++){ cacheList.add(cache.wordAtIndex(i)); } BarnesHutTsne tsne = new BarnesHutTsne.Builder() .setMaxIter(100) .theta(0.5) .normalize(false) .learningRate(500) .useAdaGrad(false) .build(); tsne.fit(weights); tsne.saveAsFile(cacheList,outputFile); }
Example 3
Source File: TsneTest.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testSimple() throws Exception { //Simple sanity check for( int test=0; test <=1; test++){ boolean syntheticData = test == 1; WorkspaceMode wsm = test == 0 ? WorkspaceMode.NONE : WorkspaceMode.ENABLED; log.info("Starting test: WSM={}, syntheticData={}", wsm, syntheticData); //STEP 1: Initialization int iterations = 50; //create an n-dimensional array of doubles Nd4j.setDefaultDataTypes(DataType.FLOAT, DataType.FLOAT); List<String> cacheList = new ArrayList<>(); //cacheList is a dynamic array of strings used to hold all words //STEP 2: Turn text input into a list of words INDArray weights; if(syntheticData){ weights = Nd4j.rand(250, 200); } else { log.info("Load & Vectorize data...."); File wordFile = new ClassPathResource("deeplearning4j-tsne/words.txt").getFile(); //Open the file //Get the data of all unique word vectors Pair<InMemoryLookupTable, VocabCache> vectors = WordVectorSerializer.loadTxt(wordFile); VocabCache cache = vectors.getSecond(); weights = vectors.getFirst().getSyn0(); //seperate weights of unique words into their own list for (int i = 0; i < cache.numWords(); i++) //seperate strings of words into their own list cacheList.add(cache.wordAtIndex(i)); } //STEP 3: build a dual-tree tsne to use later log.info("Build model...."); BarnesHutTsne tsne = new BarnesHutTsne.Builder() .setMaxIter(iterations) .theta(0.5) .normalize(false) .learningRate(500) .useAdaGrad(false) .workspaceMode(wsm) .build(); //STEP 4: establish the tsne values and save them to a file log.info("Store TSNE Coordinates for Plotting...."); File outDir = testDir.newFolder(); tsne.fit(weights); tsne.saveAsFile(cacheList, new File(outDir, "out.txt").getAbsolutePath()); } }
Example 4
Source File: TsneTest.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testPerformance() throws Exception { StopWatch watch = new StopWatch(); watch.start(); for( int test=0; test <=1; test++){ boolean syntheticData = test == 1; WorkspaceMode wsm = test == 0 ? WorkspaceMode.NONE : WorkspaceMode.ENABLED; log.info("Starting test: WSM={}, syntheticData={}", wsm, syntheticData); //STEP 1: Initialization int iterations = 50; //create an n-dimensional array of doubles Nd4j.setDefaultDataTypes(DataType.FLOAT, DataType.FLOAT); List<String> cacheList = new ArrayList<>(); //cacheList is a dynamic array of strings used to hold all words //STEP 2: Turn text input into a list of words INDArray weights; if(syntheticData){ weights = Nd4j.rand(DataType.FLOAT, 250, 20); } else { log.info("Load & Vectorize data...."); File wordFile = new ClassPathResource("deeplearning4j-tsne/words.txt").getFile(); //Open the file //Get the data of all unique word vectors Pair<InMemoryLookupTable, VocabCache> vectors = WordVectorSerializer.loadTxt(wordFile); VocabCache cache = vectors.getSecond(); weights = vectors.getFirst().getSyn0(); //seperate weights of unique words into their own list for (int i = 0; i < cache.numWords(); i++) //seperate strings of words into their own list cacheList.add(cache.wordAtIndex(i)); } //STEP 3: build a dual-tree tsne to use later log.info("Build model...."); BarnesHutTsne tsne = new BarnesHutTsne.Builder() .setMaxIter(iterations) .theta(0.5) .normalize(false) .learningRate(500) .useAdaGrad(false) .workspaceMode(wsm) .build(); //STEP 4: establish the tsne values and save them to a file log.info("Store TSNE Coordinates for Plotting...."); File outDir = testDir.newFolder(); tsne.fit(weights); tsne.saveAsFile(cacheList, new File(outDir, "out.txt").getAbsolutePath()); } watch.stop(); System.out.println("Elapsed time : " + watch); }