Java Code Examples for org.nd4j.linalg.primitives.Pair#getFirst()
The following examples show how to use
org.nd4j.linalg.primitives.Pair#getFirst() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: DeepFMOutputLayer.java From jstarcraft-rns with Apache License 2.0 | 6 votes |
@Override public Pair<Gradient, INDArray> backpropGradient(INDArray previous, LayerWorkspaceMgr workspaceMgr) { assertInputSet(true); Pair<Gradient, INDArray> pair = getGradientsAndDelta(preOutput2d(true, workspaceMgr), workspaceMgr); // Returns Gradient and delta^(this), not Gradient and epsilon^(this-1) INDArray delta = pair.getSecond(); INDArray w = getParamWithNoise(DefaultParamInitializer.WEIGHT_KEY, true, workspaceMgr); INDArray epsilonNext = workspaceMgr.createUninitialized(ArrayType.ACTIVATION_GRAD, new long[] { w.size(0), delta.size(0) }, 'f'); epsilonNext = w.mmuli(delta.transpose(), epsilonNext).transpose(); // Normally we would clear weightNoiseParams here - but we want to reuse them // for forward + backward + score // So this is instead done in MultiLayerNetwork/CompGraph backprop methods epsilonNext = backpropDropOutIfPresent(epsilonNext); return new Pair<>(pair.getFirst(), epsilonNext); }
Example 2
Source File: NDArrayTestsFortran.java From nd4j with Apache License 2.0 | 6 votes |
@Test public void testDupAndDupWithOrder() { List<Pair<INDArray, String>> testInputs = NDArrayCreationUtil.getAllTestMatricesWithShape(4, 5, 123); int count = 0; for (Pair<INDArray, String> pair : testInputs) { String msg = pair.getSecond(); INDArray in = pair.getFirst(); System.out.println("Count " + count); INDArray dup = in.dup(); INDArray dupc = in.dup('c'); INDArray dupf = in.dup('f'); assertEquals(msg, in, dup); assertEquals(msg, dup.ordering(), (char) Nd4j.order()); assertEquals(msg, dupc.ordering(), 'c'); assertEquals(msg, dupf.ordering(), 'f'); assertEquals(msg, in, dupc); assertEquals(msg, in, dupf); count++; } }
Example 3
Source File: VasttextDataIterator.java From scava with Eclipse Public License 2.0 | 6 votes |
private Pair<INDArray[], INDArray[]> convertFeatures(INDArray[] features, INDArray[] masks, List<SubsetDetails> subsetDetails, int minExamples, Map<String, List<List<Writable>>> nextRRVals, int longestFeaturesInput[], int[][] lengthFeaturesInputs) { boolean hasMasks = false; int i = 0; for (SubsetDetails d : subsetDetails) { if (nextRRVals.containsKey(d.readerName)) { List<List<Writable>> list = nextRRVals.get(d.readerName); Pair<INDArray, INDArray> p = paddingFeatures(list, minExamples, longestFeaturesInput[i], d, lengthFeaturesInputs[i]); features[i] = p.getFirst(); masks[i] = p.getSecond(); if (masks[i] != null) hasMasks = true; } i++; } return new Pair<>(features, hasMasks ? masks : null); }
Example 4
Source File: NDArrayTestsFortran.java From nd4j with Apache License 2.0 | 6 votes |
@Test public void testBroadcastingGenerated() { int[][] broadcastShape = NDArrayCreationUtil.getRandomBroadCastShape(7, 6, 10); List<List<Pair<INDArray, String>>> broadCastList = new ArrayList<>(broadcastShape.length); for (int[] shape : broadcastShape) { List<Pair<INDArray, String>> arrShape = NDArrayCreationUtil.get6dPermutedWithShape(7, shape); broadCastList.add(arrShape); broadCastList.add(NDArrayCreationUtil.get6dReshapedWithShape(7, shape)); broadCastList.add(NDArrayCreationUtil.getAll6dTestArraysWithShape(7, shape)); } for (List<Pair<INDArray, String>> b : broadCastList) { for (Pair<INDArray, String> val : b) { INDArray inputArrBroadcast = val.getFirst(); val destShape = NDArrayCreationUtil.broadcastToShape(inputArrBroadcast.shape(), 7); INDArray output = inputArrBroadcast .broadcast(NDArrayCreationUtil.broadcastToShape(inputArrBroadcast.shape(), 7)); assertArrayEquals(destShape, output.shape()); } } }
Example 5
Source File: DataSetUtil.java From nd4j with Apache License 2.0 | 6 votes |
/** * Merge all of the features arrays into one minibatch. * * @param featuresToMerge features to merge. Note that first index is the input array (example) index, the second * index is the input array. * Thus to merge 10 examples with 3 input arrays each, featuresToMerge will be indexed * like featuresToMerge[0..9][0..2] * @param featureMasksToMerge May be null. If non-null: feature masks to merge * @return Merged features, and feature masks. Note that feature masks may be added automatically, if required - even * if no feature masks were present originally */ public static Pair<INDArray[], INDArray[]> mergeFeatures(@NonNull INDArray[][] featuresToMerge, INDArray[][] featureMasksToMerge) { int nInArrs = featuresToMerge[0].length; INDArray[] outF = new INDArray[nInArrs]; INDArray[] outM = null; for (int i = 0; i < nInArrs; i++) { Pair<INDArray, INDArray> p = mergeFeatures(featuresToMerge, featureMasksToMerge, i); outF[i] = p.getFirst(); if (p.getSecond() != null) { if (outM == null) { outM = new INDArray[nInArrs]; } outM[i] = p.getSecond(); } } return new Pair<>(outF, outM); }
Example 6
Source File: JsonMappers.java From DataVec with Apache License 2.0 | 6 votes |
/** * Register a set of classes (Layer, GraphVertex, InputPreProcessor, IActivation, ILossFunction, ReconstructionDistribution * ONLY) for JSON deserialization, with custom names.<br> * Using this method directly should never be required (instead: use {@link #registerLegacyCustomClassesForJSON(Class[])} * but is added in case it is required in non-standard circumstances. */ public static void registerLegacyCustomClassesForJSON(List<Pair<String,Class>> classes){ for(Pair<String,Class> p : classes){ String s = p.getFirst(); Class c = p.getRight(); //Check if it's a valid class to register... boolean found = false; for( Class<?> c2 : REGISTERABLE_CUSTOM_CLASSES){ if(c2.isAssignableFrom(c)){ Map<String,String> map = LegacyMappingHelper.legacyMappingForClass(c2); map.put(p.getFirst(), p.getSecond().getName()); found = true; } } if(!found){ throw new IllegalArgumentException("Cannot register class for legacy JSON deserialization: class " + c.getName() + " is not a subtype of classes " + REGISTERABLE_CUSTOM_CLASSES); } } }
Example 7
Source File: TestNdArrReadWriteTxt.java From nd4j with Apache License 2.0 | 6 votes |
public static void compareArrays(int rank, char ordering) { List<Pair<INDArray, String>> all = NDArrayCreationUtil.getTestMatricesWithVaryingShapes(rank,ordering); Iterator<Pair<INDArray,String>> iter = all.iterator(); while (iter.hasNext()) { Pair<INDArray,String> currentPair = iter.next(); INDArray origArray = currentPair.getFirst(); //adding elements outside the bounds where print switches to scientific notation origArray.tensorAlongDimension(0,0).muli(0).addi(100000); origArray.putScalar(0,10001.1234); log.info("\nChecking shape ..." + currentPair.getSecond()); log.info("\n"+ origArray.dup('c').toString()); Nd4j.writeTxt(origArray, "someArr.txt"); INDArray readBack = Nd4j.readTxt("someArr.txt"); assertEquals("\nNot equal on shape " + ArrayUtils.toString(origArray.shape()), origArray, readBack); try { Files.delete(Paths.get("someArr.txt")); } catch (IOException e) { e.printStackTrace(); } } }
Example 8
Source File: DelayedMemoryTest.java From nd4j with Apache License 2.0 | 6 votes |
@Test public void testDelayedTAD1() throws Exception { TADManager tadManager = new DeviceTADManager(); INDArray array = Nd4j.create(128, 256); Pair<DataBuffer, DataBuffer> tadBuffers = tadManager.getTADOnlyShapeInfo(array, new int[]{0}); DataBuffer tadBuffer = tadBuffers.getFirst(); DataBuffer offBuffer = tadBuffers.getSecond(); AllocationPoint pointTad = AtomicAllocator.getInstance().getAllocationPoint(tadBuffer); AllocationPoint pointOff = AtomicAllocator.getInstance().getAllocationPoint(offBuffer); assertEquals(AllocationStatus.CONSTANT, pointTad.getAllocationStatus()); assertEquals(AllocationStatus.DEVICE, pointOff.getAllocationStatus()); }
Example 9
Source File: TestInvertMatrices.java From nd4j with Apache License 2.0 | 6 votes |
@Test public void testInverseComparison() { List<Pair<INDArray, String>> list = NDArrayCreationUtil.getAllTestMatricesWithShape(10, 10, 12345); for (Pair<INDArray, String> p : list) { INDArray orig = p.getFirst(); orig.assign(Nd4j.rand(orig.shape())); INDArray inverse = InvertMatrix.invert(orig, false); RealMatrix rm = CheckUtil.convertToApacheMatrix(orig); RealMatrix rmInverse = new LUDecomposition(rm).getSolver().getInverse(); INDArray expected = CheckUtil.convertFromApacheMatrix(rmInverse); assertTrue(p.getSecond(), CheckUtil.checkEntries(expected, inverse, 1e-3, 1e-4)); } }
Example 10
Source File: NDArrayTestsFortran.java From nd4j with Apache License 2.0 | 5 votes |
@Test public void testToOffsetZeroCopy() { List<Pair<INDArray, String>> testInputs = NDArrayCreationUtil.getAllTestMatricesWithShape(4, 5, 123); for (Pair<INDArray, String> pair : testInputs) { String msg = pair.getSecond(); INDArray in = pair.getFirst(); INDArray dup = Shape.toOffsetZeroCopy(in); INDArray dupc = Shape.toOffsetZeroCopy(in, 'c'); INDArray dupf = Shape.toOffsetZeroCopy(in, 'f'); INDArray dupany = Shape.toOffsetZeroCopyAnyOrder(in); assertEquals(msg, in, dup); assertEquals(msg, in, dupc); assertEquals(msg, in, dupf); assertEquals(msg, dupc.ordering(), 'c'); assertEquals(msg, dupf.ordering(), 'f'); assertEquals(msg, in, dupany); assertEquals(dup.offset(), 0); assertEquals(dupc.offset(), 0); assertEquals(dupf.offset(), 0); assertEquals(dupany.offset(), 0); assertEquals(dup.length(), dup.data().length()); assertEquals(dupc.length(), dupc.data().length()); assertEquals(dupf.length(), dupf.data().length()); assertEquals(dupany.length(), dupany.data().length()); } }
Example 11
Source File: LoneTest.java From nd4j with Apache License 2.0 | 5 votes |
@Test public void checkSliceofSlice() { /* Issue 1: Slice of slice with c order and f order views are not equal Comment out assert and run then -> Issue 2: Index out of bound exception with certain shapes when accessing elements with getDouble() in f order (looks like problem is when rank-1==1) eg. 1,2,1 and 2,2,1 */ int[] ranksToCheck = new int[]{2, 3, 4, 5}; for (int rank = 0; rank < ranksToCheck.length; rank++) { log.info("\nRunning through rank " + ranksToCheck[rank]); List<Pair<INDArray, String>> allF = NDArrayCreationUtil.getTestMatricesWithVaryingShapes(ranksToCheck[rank], 'f'); Iterator<Pair<INDArray, String>> iter = allF.iterator(); while (iter.hasNext()) { Pair<INDArray, String> currentPair = iter.next(); INDArray origArrayF = currentPair.getFirst(); INDArray sameArrayC = origArrayF.dup('c'); log.info("\nLooping through slices for shape " + currentPair.getSecond()); log.info("\nOriginal array:\n" + origArrayF); INDArray viewF = origArrayF.slice(0); INDArray viewC = sameArrayC.slice(0); log.info("\nSlice 0, C order:\n" + viewC.toString()); log.info("\nSlice 0, F order:\n" + viewF.toString()); for (int i = 0; i < viewF.slices(); i++) { //assertEquals(viewF.slice(i),viewC.slice(i)); for (int j = 0; j < viewF.slice(i).length(); j++) { //if (j>0) break; log.info("\nC order slice " + i + ", element 0 :" + viewC.slice(i).getDouble(j)); //C order is fine log.info("\nF order slice " + i + ", element 0 :" + viewF.slice(i).getDouble(j)); //throws index out of bound err on F order } } } } }
Example 12
Source File: Nd4jTest.java From nd4j with Apache License 2.0 | 5 votes |
@Test public void testExpandDims(){ final List<Pair<INDArray, String>> testMatricesC = NDArrayCreationUtil.getAllTestMatricesWithShape('c', 3, 5, 0xDEAD); final List<Pair<INDArray, String>> testMatricesF = NDArrayCreationUtil.getAllTestMatricesWithShape('f', 7, 11, 0xBEEF); final ArrayList<Pair<INDArray, String>> testMatrices = new ArrayList<>(testMatricesC); testMatrices.addAll(testMatricesF); for (Pair<INDArray, String> testMatrixPair : testMatrices) { final String recreation = testMatrixPair.getSecond(); final INDArray testMatrix = testMatrixPair.getFirst(); final char ordering = testMatrix.ordering(); val shape = testMatrix.shape(); final int rank = testMatrix.rank(); for (int i = -rank; i <= rank; i++) { final INDArray expanded = Nd4j.expandDims(testMatrix, i); final String message = "Expanding in Dimension " + i + "; Shape before expanding: " + Arrays.toString(shape) + " "+ordering+" Order; Shape after expanding: " + Arrays.toString(expanded.shape()) + " "+expanded.ordering()+"; Input Created via: " + recreation; assertEquals(message, 1, expanded.shape()[i < 0 ? i + rank : i]); assertEquals(message, testMatrix.ravel(), expanded.ravel()); assertEquals(message, ordering, expanded.ordering()); testMatrix.assign(Nd4j.rand(shape)); assertEquals(message, testMatrix.ravel(), expanded.ravel()); } } }
Example 13
Source File: DeviceTADManager.java From nd4j with Apache License 2.0 | 4 votes |
@Override public Pair<DataBuffer, DataBuffer> getTADOnlyShapeInfo(INDArray array, int[] dimension) { /* so, we check, if we have things cached. If we don't - we just create new TAD shape, and push it to constant memory */ if (dimension != null && dimension.length > 1) Arrays.sort(dimension); Integer deviceId = AtomicAllocator.getInstance().getDeviceId(); //log.info("Requested TAD for device [{}], dimensions: [{}]", deviceId, Arrays.toString(dimension)); //extract the dimensions and shape buffer for comparison TadDescriptor descriptor = new TadDescriptor(array, dimension); if (!tadCache.get(deviceId).containsKey(descriptor)) { log.trace("Creating new TAD..."); //create the TAD with the shape information and corresponding offsets //note that we use native code to get access to the shape information. Pair<DataBuffer, DataBuffer> buffers = super.getTADOnlyShapeInfo(array, dimension); /** * Store the buffers in constant memory. * The main implementation of this is cuda right now. * * Explanation from: http://cuda-programming.blogspot.jp/2013/01/what-is-constant-memory-in-cuda.html * The CUDA language makes available another kind of memory known as constant memory. As the opName may indicate, we use constant memory for data that will not change over the course of a kernel execution. Why Constant Memory? NVIDIA hardware provides 64KB of constant memory that it treats differently than it treats standard global memory. In some situations, using constant memory rather than global memory will reduce the required memory bandwidth. NOTE HERE FOR US: We use 48kb of it using these methods. Note also that we use the {@link AtomicAllocator} which is the cuda memory manager for moving the current host space data buffer to constant memory. We do this for device access to shape information. */ if (buffers.getFirst() != array.shapeInfoDataBuffer()) AtomicAllocator.getInstance().moveToConstant(buffers.getFirst()); /** * @see {@link org.nd4j.jita.constant.ProtectedCudaConstantHandler} */ if (buffers.getSecond() != null) AtomicAllocator.getInstance().moveToConstant(buffers.getSecond()); // so, at this point we have buffer valid on host side. // And we just need to replace DevicePointer with constant pointer tadCache.get(deviceId).put(descriptor, buffers); bytes.addAndGet((buffers.getFirst().length() * 4)); if (buffers.getSecond() != null) bytes.addAndGet(buffers.getSecond().length() * 8); log.trace("Using TAD from cache..."); } return tadCache.get(deviceId).get(descriptor); }
Example 14
Source File: BaseNDArray.java From nd4j with Apache License 2.0 | 4 votes |
@Override public INDArray tensorAlongDimension(int index, int... dimension) { if (dimension == null || dimension.length == 0) throw new IllegalArgumentException("Invalid input: dimensions not specified (null or length 0)"); if (dimension.length >= rank() || dimension.length == 1 && dimension[0] == Integer.MAX_VALUE) return this; for (int i = 0; i < dimension.length; i++) if (dimension[i] < 0) dimension[i] += rank(); //dedup if (dimension.length > 1) dimension = Ints.toArray(new ArrayList<>(new TreeSet<>(Ints.asList(dimension)))); if (dimension.length > 1) { Arrays.sort(dimension); } long tads = tensorssAlongDimension(dimension); if (index >= tads) throw new IllegalArgumentException("Illegal index " + index + " out of tads " + tads); if (dimension.length == 1) { if (dimension[0] == 0 && isColumnVector()) { return this.transpose(); } else if (dimension[0] == 1 && isRowVector()) { return this; } } Pair<DataBuffer, DataBuffer> tadInfo = Nd4j.getExecutioner().getTADManager().getTADOnlyShapeInfo(this, dimension); DataBuffer shapeInfo = tadInfo.getFirst(); val shape = Shape.shape(shapeInfo); val stride = Shape.stride(shapeInfo).asLong(); long offset = offset() + tadInfo.getSecond().getLong(index); INDArray toTad = Nd4j.create(data(), shape, stride, offset); BaseNDArray baseNDArray = (BaseNDArray) toTad; //preserve immutability char newOrder = Shape.getOrder(shape, stride, 1); int ews = baseNDArray.shapeInfoDataBuffer().getInt(baseNDArray.shapeInfoDataBuffer().length() - 2); //TAD always calls permute. Permute EWS is always -1. This is not true // for row vector shapes though. if (!Shape.isRowVectorShape(baseNDArray.shapeInfoDataBuffer())) ews = -1; // we create new shapeInfo with possibly new ews & order /** * NOTE HERE THAT ZERO IS PRESET FOR THE OFFSET AND SHOULD STAY LIKE THAT. * Zero is preset for caching purposes. * We don't actually use the offset defined in the * shape info data buffer. * We calculate and cache the offsets separately. * */ baseNDArray.setShapeInformation( Nd4j.getShapeInfoProvider().createShapeInformation(shape, stride, 0, ews, newOrder)); return toTad; }
Example 15
Source File: SumLongsFunction2.java From DataVec with Apache License 2.0 | 4 votes |
@Override public Long apply(Pair<Long, Long> input) { return input.getFirst() + input.getSecond(); }
Example 16
Source File: ConvolutionTestsC.java From nd4j with Apache License 2.0 | 4 votes |
@Test @Ignore public void testMaxPoolBackprop(){ Nd4j.getRandom().setSeed(12345); for( int i=0; i<5; i++ ) { int[] inputShape = {1, 1, 4, 3}; int[] kernel = {2, 2}; int[] strides = {1, 1}; int[] pad = {0, 0}; int[] dilation = {1, 1}; //TODO non 1-1 dilation boolean same = true; String fn = "maxpool2d_bp"; int nIArgs = 11; int[] a = new int[nIArgs]; a[0] = kernel[0]; a[1] = kernel[1]; a[2] = strides[0]; a[3] = strides[1]; a[4] = pad[0]; a[5] = pad[1]; a[6] = dilation[0]; a[7] = dilation[1]; a[8] = same ? 1 : 0; //a[9]: Not used with max pooling a[10] = 0; //For NCHW List<Pair<INDArray, String>> inputs = NDArrayCreationUtil.getAll4dTestArraysWithShape(12345, inputShape); for(Pair<INDArray,String> pIn : inputs){ INDArray input = pIn.getFirst(); int[] outShapeHW = getOutputSize(input, kernel, strides, pad, same); List<Pair<INDArray, String>> eps = NDArrayCreationUtil.getAll4dTestArraysWithShape(12345, inputShape[0], inputShape[1], outShapeHW[0], outShapeHW[1]); for(Pair<INDArray,String> pEps : eps){ INDArray epsilon = pEps.getFirst(); INDArray epsNext = Nd4j.create(inputShape, 'c'); //Runs fine with dups: // input = input.dup('c'); epsilon = epsilon.dup('c'); DynamicCustomOp op = DynamicCustomOp.builder(fn) .addInputs(input, epsilon) .addOutputs(epsNext) .addIntegerArguments(a) .build(); Nd4j.getExecutioner().exec(op); INDArray expEpsNext = expGradMaxPoolBackPropSame(input, epsilon, kernel, strides, same); String msg = "input=" + pIn.getSecond() + ", eps=" + pEps.getSecond(); assertEquals(msg, expEpsNext, epsNext); } } } }
Example 17
Source File: StaticShapeTests.java From nd4j with Apache License 2.0 | 4 votes |
@Test public void testBufferToIntShapeStrideMethods() { //Specifically: Shape.shape(IntBuffer), Shape.shape(DataBuffer) //.isRowVectorShape(DataBuffer), .isRowVectorShape(IntBuffer) //Shape.size(DataBuffer,int), Shape.size(IntBuffer,int) //Also: Shape.stride(IntBuffer), Shape.stride(DataBuffer) //Shape.stride(DataBuffer,int), Shape.stride(IntBuffer,int) List<List<Pair<INDArray, String>>> lists = new ArrayList<>(); lists.add(NDArrayCreationUtil.getAllTestMatricesWithShape(3, 4, 12345)); lists.add(NDArrayCreationUtil.getAllTestMatricesWithShape(1, 4, 12345)); lists.add(NDArrayCreationUtil.getAllTestMatricesWithShape(3, 1, 12345)); lists.add(NDArrayCreationUtil.getAll3dTestArraysWithShape(12345, 3, 4, 5)); lists.add(NDArrayCreationUtil.getAll4dTestArraysWithShape(12345, 3, 4, 5, 6)); lists.add(NDArrayCreationUtil.getAll4dTestArraysWithShape(12345, 3, 1, 5, 1)); lists.add(NDArrayCreationUtil.getAll5dTestArraysWithShape(12345, 3, 4, 5, 6, 7)); lists.add(NDArrayCreationUtil.getAll6dTestArraysWithShape(12345, 3, 4, 5, 6, 7, 8)); val shapes = new long[][] {{3, 4}, {1, 4}, {3, 1}, {3, 4, 5}, {3, 4, 5, 6}, {3, 1, 5, 1}, {3, 4, 5, 6, 7}, {3, 4, 5, 6, 7, 8}}; for (int i = 0; i < shapes.length; i++) { List<Pair<INDArray, String>> list = lists.get(i); val shape = shapes[i]; for (Pair<INDArray, String> p : list) { INDArray arr = p.getFirst(); assertArrayEquals(shape, arr.shape()); val thisStride = arr.stride(); val ib = arr.shapeInfo(); DataBuffer db = arr.shapeInfoDataBuffer(); //Check shape calculation assertEquals(shape.length, Shape.rank(ib)); assertEquals(shape.length, Shape.rank(db)); assertArrayEquals(shape, Shape.shape(ib)); assertArrayEquals(shape, Shape.shape(db)); for (int j = 0; j < shape.length; j++) { assertEquals(shape[j], Shape.size(ib, j)); assertEquals(shape[j], Shape.size(db, j)); assertEquals(thisStride[j], Shape.stride(ib, j)); assertEquals(thisStride[j], Shape.stride(db, j)); } //Check base offset assertEquals(Shape.offset(ib), Shape.offset(db)); //Check offset calculation: NdIndexIterator iter = new NdIndexIterator(shape); while (iter.hasNext()) { val next = iter.next(); long offset1 = Shape.getOffset(ib, next); assertEquals(offset1, Shape.getOffset(db, next)); switch (shape.length) { case 2: assertEquals(offset1, Shape.getOffset(ib, next[0], next[1])); assertEquals(offset1, Shape.getOffset(db, next[0], next[1])); break; case 3: assertEquals(offset1, Shape.getOffset(ib, next[0], next[1], next[2])); assertEquals(offset1, Shape.getOffset(db, next[0], next[1], next[2])); break; case 4: assertEquals(offset1, Shape.getOffset(ib, next[0], next[1], next[2], next[3])); assertEquals(offset1, Shape.getOffset(db, next[0], next[1], next[2], next[3])); break; case 5: case 6: //No 5 and 6d getOffset overloads break; default: throw new RuntimeException(); } } } } }
Example 18
Source File: BaseSparseNDArray.java From nd4j with Apache License 2.0 | 4 votes |
protected void setShapeInformation(Pair<DataBuffer, long[]> shapeInfo) { this.shapeInformation = shapeInfo.getFirst(); this.javaShapeInformation = shapeInfo.getSecond(); }
Example 19
Source File: VasttextDataIterator.java From scava with Eclipse Public License 2.0 | 4 votes |
public MultiDataSet nextMultiDataSet(Map<String, List<List<Writable>>> nextRRVals, List<RecordMetaDataComposableMap> nextMetas) { int minExamples = Integer.MAX_VALUE; for (List<List<Writable>> exampleData : nextRRVals.values()) { minExamples = Math.min(minExamples, exampleData.size()); } // Support for VastText int[] longestRecord = new int[inputs.size()]; int recordLength; //This allows to aling text vectors of different lenghts in the batch int recordPos = inputs.get(0).subsetStart; int inputPos = 0; List<List<Writable>> list; int[][] inputsLength = new int[inputs.size()][minExamples]; for (Entry<String, List<List<Writable>>> entry : nextRRVals.entrySet()) { list = entry.getValue(); for (int i = 0; i < list.size() && i < minExamples; i++) { // Analysis of Records recordLength = (int) ((NDArrayWritable) list.get(i).get(recordPos)).length(); inputsLength[inputPos][i] = Math.max(inputsLength[inputPos][i], recordLength); longestRecord[inputPos] = Math.max(longestRecord[inputPos], recordLength); } inputPos++; } if (minExamples == Integer.MAX_VALUE) throw new RuntimeException("Error occurred during data set generation: no readers?"); // Should never happen Pair<INDArray[], INDArray[]> features = convertFeatures(new INDArray[inputs.size()], new INDArray[inputs.size()], inputs, minExamples, nextRRVals, longestRecord, inputsLength); Pair<INDArray[], INDArray[]> labels = convertLabels(new INDArray[outputs.size()], new INDArray[outputs.size()], outputs, minExamples, nextRRVals); MultiDataSet mds = new org.nd4j.linalg.dataset.MultiDataSet(features.getFirst(), labels.getFirst(), features.getSecond(), labels.getSecond()); if (collectMetaData) { mds.setExampleMetaData(nextMetas); } if (preProcessor != null) preProcessor.preProcess(mds); return mds; }
Example 20
Source File: BaseNDArray.java From nd4j with Apache License 2.0 | 4 votes |
private void setShapeInformation(Pair<DataBuffer, long[]> shapeInfo) { this.shapeInformation = shapeInfo.getFirst(); this.javaShapeInformation = shapeInfo.getSecond(); }