Java Code Examples for org.apache.flink.graph.utils.GraphUtils#count()
The following examples show how to use
org.apache.flink.graph.utils.GraphUtils#count() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: ScatterGatherIteration.java From Flink-CEPplus with Apache License 2.0 | 4 votes |
/** * Creates the operator that represents this scatter-gather graph computation. * * @return The operator that represents this scatter-gather graph computation. */ @Override public DataSet<Vertex<K, VV>> createResult() { if (this.initialVertices == null) { throw new IllegalStateException("The input data set has not been set."); } // prepare some type information TypeInformation<K> keyType = ((TupleTypeInfo<?>) initialVertices.getType()).getTypeAt(0); TypeInformation<Tuple2<K, Message>> messageTypeInfo = new TupleTypeInfo<>(keyType, messageType); // create a graph Graph<K, VV, EV> graph = Graph.fromDataSet(initialVertices, edgesWithValue, initialVertices.getExecutionEnvironment()); // check whether the numVertices option is set and, if so, compute the total number of vertices // and set it within the scatter and gather functions DataSet<LongValue> numberOfVertices = null; if (this.configuration != null && this.configuration.isOptNumVertices()) { try { numberOfVertices = GraphUtils.count(this.initialVertices); } catch (Exception e) { e.printStackTrace(); } } if (this.configuration != null) { scatterFunction.setDirection(this.configuration.getDirection()); } else { scatterFunction.setDirection(EdgeDirection.OUT); } // retrieve the direction in which the updates are made and in which the messages are sent EdgeDirection messagingDirection = scatterFunction.getDirection(); // check whether the degrees option is set and, if so, compute the in and the out degrees and // add them to the vertex value if (this.configuration != null && this.configuration.isOptDegrees()) { return createResultVerticesWithDegrees(graph, messagingDirection, messageTypeInfo, numberOfVertices); } else { return createResultSimpleVertex(messagingDirection, messageTypeInfo, numberOfVertices); } }
Example 2
Source File: PageRank.java From Flink-CEPplus with Apache License 2.0 | 4 votes |
@Override public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input) throws Exception { // vertex degree DataSet<Vertex<K, Degrees>> vertexDegree = input .run(new VertexDegrees<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices) .setParallelism(parallelism)); // vertex count DataSet<LongValue> vertexCount = GraphUtils.count(vertexDegree); // s, t, d(s) DataSet<Edge<K, LongValue>> edgeSourceDegree = input .run(new EdgeSourceDegrees<K, VV, EV>() .setParallelism(parallelism)) .map(new ExtractSourceDegree<>()) .setParallelism(parallelism) .name("Extract source degree"); // vertices with zero in-edges DataSet<Tuple2<K, DoubleValue>> sourceVertices = vertexDegree .flatMap(new InitializeSourceVertices<>()) .setParallelism(parallelism) .name("Initialize source vertex scores"); // s, initial pagerank(s) DataSet<Tuple2<K, DoubleValue>> initialScores = vertexDegree .map(new InitializeVertexScores<>()) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Initialize scores"); IterativeDataSet<Tuple2<K, DoubleValue>> iterative = initialScores .iterate(maxIterations) .setParallelism(parallelism); // s, projected pagerank(s) DataSet<Tuple2<K, DoubleValue>> vertexScores = iterative .coGroup(edgeSourceDegree) .where(0) .equalTo(0) .with(new SendScore<>()) .setParallelism(parallelism) .name("Send score") .groupBy(0) .reduce(new SumScore<>()) .setCombineHint(CombineHint.HASH) .setParallelism(parallelism) .name("Sum"); // ignored ID, total pagerank DataSet<Tuple2<K, DoubleValue>> sumOfScores = vertexScores .reduce(new SumVertexScores<>()) .setParallelism(parallelism) .name("Sum"); // s, adjusted pagerank(s) DataSet<Tuple2<K, DoubleValue>> adjustedScores = vertexScores .union(sourceVertices) .name("Union with source vertices") .map(new AdjustScores<>(dampingFactor)) .withBroadcastSet(sumOfScores, SUM_OF_SCORES) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Adjust scores"); DataSet<Tuple2<K, DoubleValue>> passThrough; if (convergenceThreshold < Double.MAX_VALUE) { passThrough = iterative .join(adjustedScores) .where(0) .equalTo(0) .with(new ChangeInScores<>()) .setParallelism(parallelism) .name("Change in scores"); iterative.registerAggregationConvergenceCriterion(CHANGE_IN_SCORES, new DoubleSumAggregator(), new ScoreConvergence(convergenceThreshold)); } else { passThrough = adjustedScores; } return iterative .closeWith(passThrough) .map(new TranslateResult<>()) .setParallelism(parallelism) .name("Map result"); }
Example 3
Source File: ScatterGatherIteration.java From flink with Apache License 2.0 | 4 votes |
/** * Creates the operator that represents this scatter-gather graph computation. * * @return The operator that represents this scatter-gather graph computation. */ @Override public DataSet<Vertex<K, VV>> createResult() { if (this.initialVertices == null) { throw new IllegalStateException("The input data set has not been set."); } // prepare some type information TypeInformation<K> keyType = ((TupleTypeInfo<?>) initialVertices.getType()).getTypeAt(0); TypeInformation<Tuple2<K, Message>> messageTypeInfo = new TupleTypeInfo<>(keyType, messageType); // create a graph Graph<K, VV, EV> graph = Graph.fromDataSet(initialVertices, edgesWithValue, initialVertices.getExecutionEnvironment()); // check whether the numVertices option is set and, if so, compute the total number of vertices // and set it within the scatter and gather functions DataSet<LongValue> numberOfVertices = null; if (this.configuration != null && this.configuration.isOptNumVertices()) { try { numberOfVertices = GraphUtils.count(this.initialVertices); } catch (Exception e) { e.printStackTrace(); } } if (this.configuration != null) { scatterFunction.setDirection(this.configuration.getDirection()); } else { scatterFunction.setDirection(EdgeDirection.OUT); } // retrieve the direction in which the updates are made and in which the messages are sent EdgeDirection messagingDirection = scatterFunction.getDirection(); // check whether the degrees option is set and, if so, compute the in and the out degrees and // add them to the vertex value if (this.configuration != null && this.configuration.isOptDegrees()) { return createResultVerticesWithDegrees(graph, messagingDirection, messageTypeInfo, numberOfVertices); } else { return createResultSimpleVertex(messagingDirection, messageTypeInfo, numberOfVertices); } }
Example 4
Source File: PageRank.java From flink with Apache License 2.0 | 4 votes |
@Override public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input) throws Exception { // vertex degree DataSet<Vertex<K, Degrees>> vertexDegree = input .run(new VertexDegrees<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices) .setParallelism(parallelism)); // vertex count DataSet<LongValue> vertexCount = GraphUtils.count(vertexDegree); // s, t, d(s) DataSet<Edge<K, LongValue>> edgeSourceDegree = input .run(new EdgeSourceDegrees<K, VV, EV>() .setParallelism(parallelism)) .map(new ExtractSourceDegree<>()) .setParallelism(parallelism) .name("Extract source degree"); // vertices with zero in-edges DataSet<Tuple2<K, DoubleValue>> sourceVertices = vertexDegree .flatMap(new InitializeSourceVertices<>()) .setParallelism(parallelism) .name("Initialize source vertex scores"); // s, initial pagerank(s) DataSet<Tuple2<K, DoubleValue>> initialScores = vertexDegree .map(new InitializeVertexScores<>()) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Initialize scores"); IterativeDataSet<Tuple2<K, DoubleValue>> iterative = initialScores .iterate(maxIterations) .setParallelism(parallelism); // s, projected pagerank(s) DataSet<Tuple2<K, DoubleValue>> vertexScores = iterative .coGroup(edgeSourceDegree) .where(0) .equalTo(0) .with(new SendScore<>()) .setParallelism(parallelism) .name("Send score") .groupBy(0) .reduce(new SumScore<>()) .setCombineHint(CombineHint.HASH) .setParallelism(parallelism) .name("Sum"); // ignored ID, total pagerank DataSet<Tuple2<K, DoubleValue>> sumOfScores = vertexScores .reduce(new SumVertexScores<>()) .setParallelism(parallelism) .name("Sum"); // s, adjusted pagerank(s) DataSet<Tuple2<K, DoubleValue>> adjustedScores = vertexScores .union(sourceVertices) .name("Union with source vertices") .map(new AdjustScores<>(dampingFactor)) .withBroadcastSet(sumOfScores, SUM_OF_SCORES) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Adjust scores"); DataSet<Tuple2<K, DoubleValue>> passThrough; if (convergenceThreshold < Double.MAX_VALUE) { passThrough = iterative .join(adjustedScores) .where(0) .equalTo(0) .with(new ChangeInScores<>()) .setParallelism(parallelism) .name("Change in scores"); iterative.registerAggregationConvergenceCriterion(CHANGE_IN_SCORES, new DoubleSumAggregator(), new ScoreConvergence(convergenceThreshold)); } else { passThrough = adjustedScores; } return iterative .closeWith(passThrough) .map(new TranslateResult<>()) .setParallelism(parallelism) .name("Map result"); }
Example 5
Source File: ScatterGatherIteration.java From flink with Apache License 2.0 | 4 votes |
/** * Creates the operator that represents this scatter-gather graph computation. * * @return The operator that represents this scatter-gather graph computation. */ @Override public DataSet<Vertex<K, VV>> createResult() { if (this.initialVertices == null) { throw new IllegalStateException("The input data set has not been set."); } // prepare some type information TypeInformation<K> keyType = ((TupleTypeInfo<?>) initialVertices.getType()).getTypeAt(0); TypeInformation<Tuple2<K, Message>> messageTypeInfo = new TupleTypeInfo<>(keyType, messageType); // create a graph Graph<K, VV, EV> graph = Graph.fromDataSet(initialVertices, edgesWithValue, initialVertices.getExecutionEnvironment()); // check whether the numVertices option is set and, if so, compute the total number of vertices // and set it within the scatter and gather functions DataSet<LongValue> numberOfVertices = null; if (this.configuration != null && this.configuration.isOptNumVertices()) { try { numberOfVertices = GraphUtils.count(this.initialVertices); } catch (Exception e) { e.printStackTrace(); } } if (this.configuration != null) { scatterFunction.setDirection(this.configuration.getDirection()); } else { scatterFunction.setDirection(EdgeDirection.OUT); } // retrieve the direction in which the updates are made and in which the messages are sent EdgeDirection messagingDirection = scatterFunction.getDirection(); // check whether the degrees option is set and, if so, compute the in and the out degrees and // add them to the vertex value if (this.configuration != null && this.configuration.isOptDegrees()) { return createResultVerticesWithDegrees(graph, messagingDirection, messageTypeInfo, numberOfVertices); } else { return createResultSimpleVertex(messagingDirection, messageTypeInfo, numberOfVertices); } }
Example 6
Source File: PageRank.java From flink with Apache License 2.0 | 4 votes |
@Override public DataSet<Result<K>> runInternal(Graph<K, VV, EV> input) throws Exception { // vertex degree DataSet<Vertex<K, Degrees>> vertexDegree = input .run(new VertexDegrees<K, VV, EV>() .setIncludeZeroDegreeVertices(includeZeroDegreeVertices) .setParallelism(parallelism)); // vertex count DataSet<LongValue> vertexCount = GraphUtils.count(vertexDegree); // s, t, d(s) DataSet<Edge<K, LongValue>> edgeSourceDegree = input .run(new EdgeSourceDegrees<K, VV, EV>() .setParallelism(parallelism)) .map(new ExtractSourceDegree<>()) .setParallelism(parallelism) .name("Extract source degree"); // vertices with zero in-edges DataSet<Tuple2<K, DoubleValue>> sourceVertices = vertexDegree .flatMap(new InitializeSourceVertices<>()) .setParallelism(parallelism) .name("Initialize source vertex scores"); // s, initial pagerank(s) DataSet<Tuple2<K, DoubleValue>> initialScores = vertexDegree .map(new InitializeVertexScores<>()) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Initialize scores"); IterativeDataSet<Tuple2<K, DoubleValue>> iterative = initialScores .iterate(maxIterations) .setParallelism(parallelism); // s, projected pagerank(s) DataSet<Tuple2<K, DoubleValue>> vertexScores = iterative .coGroup(edgeSourceDegree) .where(0) .equalTo(0) .with(new SendScore<>()) .setParallelism(parallelism) .name("Send score") .groupBy(0) .reduce(new SumScore<>()) .setCombineHint(CombineHint.HASH) .setParallelism(parallelism) .name("Sum"); // ignored ID, total pagerank DataSet<Tuple2<K, DoubleValue>> sumOfScores = vertexScores .reduce(new SumVertexScores<>()) .setParallelism(parallelism) .name("Sum"); // s, adjusted pagerank(s) DataSet<Tuple2<K, DoubleValue>> adjustedScores = vertexScores .union(sourceVertices) .name("Union with source vertices") .map(new AdjustScores<>(dampingFactor)) .withBroadcastSet(sumOfScores, SUM_OF_SCORES) .withBroadcastSet(vertexCount, VERTEX_COUNT) .setParallelism(parallelism) .name("Adjust scores"); DataSet<Tuple2<K, DoubleValue>> passThrough; if (convergenceThreshold < Double.MAX_VALUE) { passThrough = iterative .join(adjustedScores) .where(0) .equalTo(0) .with(new ChangeInScores<>()) .setParallelism(parallelism) .name("Change in scores"); iterative.registerAggregationConvergenceCriterion(CHANGE_IN_SCORES, new DoubleSumAggregator(), new ScoreConvergence(convergenceThreshold)); } else { passThrough = adjustedScores; } return iterative .closeWith(passThrough) .map(new TranslateResult<>()) .setParallelism(parallelism) .name("Map result"); }