Java Code Examples for org.apache.spark.streaming.api.java.JavaInputDStream#mapToPair()
The following examples show how to use
org.apache.spark.streaming.api.java.JavaInputDStream#mapToPair() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: StreamingEngine.java From spark-streaming-direct-kafka with Apache License 2.0 | 6 votes |
public void start() { SparkConf sparkConf = getSparkConf(); streamingContext = new JavaStreamingContext(sparkConf, Durations.seconds(Long.parseLong(config.getStreamingBatchIntervalInSec()))); JavaInputDStream<MessageAndMetadata<String, byte[]>> dStream = buildInputDStream(streamingContext); JavaPairDStream<String, byte[]> pairDStream = dStream.mapToPair(km -> new Tuple2<>(km.key(), km.message())); pairDStream.foreachRDD(new ProcessStreamingData<>(config)); // process data dStream.foreachRDD(new UpdateOffsetsFn<>(config.getKafkaGroupId(), config.getZkOffsetManager())); streamingContext.start(); }
Example 2
Source File: SparkRunner.java From jaeger-analytics-java with Apache License 2.0 | 4 votes |
public static void main(String []args) throws InterruptedException, IOException { HTTPServer server = new HTTPServer(Integer.valueOf(getPropOrEnv("PROMETHEUS_PORT", "9111"))); SparkConf sparkConf = new SparkConf() .setAppName("Trace DSL") .setMaster(getPropOrEnv("SPARK_MASTER","local[*]")); JavaSparkContext sc = new JavaSparkContext(sparkConf); JavaStreamingContext ssc = new JavaStreamingContext(sc, new Duration(Integer.parseInt(getPropOrEnv("SPARK_STREAMING_BATCH_DURATION", "5000")))); Set<String> topics = Collections.singleton(getPropOrEnv("KAFKA_JAEGER_TOPIC", "jaeger-spans")); Map<String, Object> kafkaParams = new HashMap<>(); kafkaParams.put("bootstrap.servers", getPropOrEnv("KAFKA_BOOTSTRAP_SERVER", "localhost:9092")); kafkaParams.put("key.deserializer", StringDeserializer.class); kafkaParams.put("value.deserializer", ProtoSpanDeserializer.class); // hack to start always from beginning kafkaParams.put("group.id", "jaeger-trace-aggregation-" + System.currentTimeMillis()); if (Boolean.parseBoolean(getPropOrEnv("KAFKA_START_FROM_BEGINNING", "true"))) { kafkaParams.put("auto.offset.reset", "earliest"); kafkaParams.put("enable.auto.commit", false); kafkaParams.put("startingOffsets", "earliest"); } JavaInputDStream<ConsumerRecord<String, Span>> messages = KafkaUtils.createDirectStream( ssc, LocationStrategies.PreferConsistent(), ConsumerStrategies.Subscribe(topics, kafkaParams)); JavaPairDStream<String, Span> traceIdSpanTuple = messages.mapToPair(record -> { return new Tuple2<>(record.value().traceId, record.value()); }); JavaDStream<Trace> tracesStream = traceIdSpanTuple.groupByKey().map(traceIdSpans -> { System.out.printf("traceID: %s\n", traceIdSpans._1); Iterable<Span> spans = traceIdSpans._2(); Trace trace = new Trace(); trace.traceId = traceIdSpans._1(); trace.spans = StreamSupport.stream(spans.spliterator(), false) .collect(Collectors.toList()); return trace; }); MinimumClientVersion minimumClientVersion = MinimumClientVersion.builder() .withJavaVersion(getPropOrEnv("TRACE_QUALITY_JAVA_VERSION", "1.0.0")) .withGoVersion(getPropOrEnv("TRACE_QUALITY_GO_VERSION", "2.22.0")) .withNodeVersion(getPropOrEnv("TRACE_QUALITY_NODE_VERSION", "3.17.1")) .withPythonVersion(getPropOrEnv("TRACE_QUALITY_PYTHON_VERSION", "4.0.0")) .build(); List<ModelRunner> modelRunner = Arrays.asList( new TraceHeight(), new ServiceDepth(), new ServiceHeight(), new NetworkLatency(), new NumberOfErrors(), new DirectDependencies(), // trace quality minimumClientVersion, new HasClientServerSpans(), new UniqueSpanId()); tracesStream.foreachRDD((traceRDD, time) -> { traceRDD.foreach(trace -> { Graph graph = GraphCreator.create(trace); for (ModelRunner model: modelRunner) { model.runWithMetrics(graph); } }); }); ssc.start(); ssc.awaitTermination(); }
Example 3
Source File: KafkaExample.java From Apache-Spark-2x-for-Java-Developers with MIT License | 4 votes |
public static void main(String[] args) { //Window Specific property if Hadoop is not instaalled or HADOOP_HOME is not set System.setProperty("hadoop.home.dir", "E:\\hadoop"); //Logger rootLogger = LogManager.getRootLogger(); //rootLogger.setLevel(Level.WARN); SparkConf conf = new SparkConf().setAppName("KafkaExample").setMaster("local[*]"); JavaSparkContext sc = new JavaSparkContext(conf); JavaStreamingContext streamingContext = new JavaStreamingContext(sc, Durations.minutes(2)); streamingContext.checkpoint("E:\\hadoop\\checkpoint"); Logger rootLogger = LogManager.getRootLogger(); rootLogger.setLevel(Level.WARN); Map<String, Object> kafkaParams = new HashMap<>(); kafkaParams.put("bootstrap.servers", "10.0.75.1:9092"); kafkaParams.put("key.deserializer", StringDeserializer.class); kafkaParams.put("value.deserializer", StringDeserializer.class); kafkaParams.put("group.id", "use_a_separate_group_id_for_each_strea"); kafkaParams.put("auto.offset.reset", "latest"); // kafkaParams.put("enable.auto.commit", false); Collection<String> topics = Arrays.asList("mytopic", "anothertopic"); final JavaInputDStream<ConsumerRecord<String, String>> stream = KafkaUtils.createDirectStream(streamingContext,LocationStrategies.PreferConsistent(), ConsumerStrategies.<String, String>Subscribe(topics, kafkaParams)); JavaPairDStream<String, String> pairRDD = stream.mapToPair(record-> new Tuple2<>(record.key(), record.value())); pairRDD.foreachRDD(pRDD-> { pRDD.foreach(tuple-> System.out.println(new Date()+" :: Kafka msg key ::"+tuple._1() +" the val is ::"+tuple._2()));}); JavaDStream<String> tweetRDD = pairRDD.map(x-> x._2()).map(new TweetText()); tweetRDD.foreachRDD(tRDD -> tRDD.foreach(x->System.out.println(new Date()+" :: "+x))); JavaDStream<String> hashtagRDD = tweetRDD.flatMap(twt-> Arrays.stream(twt.split(" ")).filter(str-> str.contains("#")).collect(Collectors.toList()).iterator() ); hashtagRDD.foreachRDD(tRDD -> tRDD.foreach(x->System.out.println(x))); JavaPairDStream<String, Long> cntByVal = hashtagRDD.countByValue(); cntByVal.foreachRDD(tRDD -> tRDD.foreach(x->System.out.println(new Date()+" ::The count tag is ::"+x._1() +" and the val is ::"+x._2()))); /* hashtagRDD.window(Durations.seconds(60), Durations.seconds(30)) .countByValue() .foreachRDD(tRDD -> tRDD.foreach(x->System.out.println(new Date()+" ::The window count tag is ::"+x._1() +" and the val is ::"+x._2()))); hashtagRDD.countByValueAndWindow(Durations.seconds(60), Durations.seconds(30)) .foreachRDD(tRDD -> tRDD.foreach(x->System.out.println("The window&count tag is ::"+x._1() +" and the val is ::"+x._2()))); */ hashtagRDD.window(Durations.minutes(8)).countByValue() .foreachRDD(tRDD -> tRDD.foreach(x->System.out.println(new Date()+" ::The window count tag is ::"+x._1() +" and the val is ::"+x._2()))); hashtagRDD.window(Durations.minutes(8),Durations.minutes(2)).countByValue() .foreachRDD(tRDD -> tRDD.foreach(x->System.out.println(new Date()+" ::The window count tag is ::"+x._1() +" and the val is ::"+x._2()))); hashtagRDD.window(Durations.minutes(12),Durations.minutes(8)).countByValue() .foreachRDD(tRDD -> tRDD.foreach(x->System.out.println(new Date()+" ::The window count tag is ::"+x._1() +" and the val is ::"+x._2()))); hashtagRDD.window(Durations.minutes(2),Durations.minutes(2)).countByValue() .foreachRDD(tRDD -> tRDD.foreach(x->System.out.println(new Date()+" ::The window count tag is ::"+x._1() +" and the val is ::"+x._2()))); hashtagRDD.window(Durations.minutes(12),Durations.minutes(12)).countByValue() .foreachRDD(tRDD -> tRDD.foreach(x->System.out.println(new Date()+" ::The window count tag is ::"+x._1() +" and the val is ::"+x._2()))); /*hashtagRDD.window(Durations.minutes(5),Durations.minutes(2)).countByValue() .foreachRDD(tRDD -> tRDD.foreach(x->System.out.println(new Date()+" ::The window count tag is ::"+x._1() +" and the val is ::"+x._2())));*/ /* hashtagRDD.window(Durations.minutes(10),Durations.minutes(1)).countByValue() .foreachRDD(tRDD -> tRDD.foreach(x->System.out.println(new Date()+" ::The window count tag is ::"+x._1() +" and the val is ::"+x._2())));*/ streamingContext.start(); try { streamingContext.awaitTermination(); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } }
Example 4
Source File: SpeedLayer.java From oryx with Apache License 2.0 | 4 votes |
public synchronized void start() { String id = getID(); if (id != null) { log.info("Starting Speed Layer {}", id); } streamingContext = buildStreamingContext(); log.info("Creating message stream from topic"); JavaInputDStream<ConsumerRecord<K,M>> kafkaDStream = buildInputDStream(streamingContext); JavaPairDStream<K,M> pairDStream = kafkaDStream.mapToPair(mAndM -> new Tuple2<>(mAndM.key(), mAndM.value())); KafkaConsumer<String,U> consumer = new KafkaConsumer<>( ConfigUtils.keyValueToProperties( "group.id", "OryxGroup-" + getLayerName() + '-' + UUID.randomUUID(), "bootstrap.servers", updateBroker, "max.partition.fetch.bytes", maxMessageSize, "key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer", "value.deserializer", updateDecoderClass.getName(), // Do start from the beginning of the update queue "auto.offset.reset", "earliest" )); consumer.subscribe(Collections.singletonList(updateTopic)); consumerIterator = new ConsumeDataIterator<>(consumer); modelManager = loadManagerInstance(); Configuration hadoopConf = streamingContext.sparkContext().hadoopConfiguration(); new Thread(LoggingCallable.log(() -> { try { modelManager.consume(consumerIterator, hadoopConf); } catch (Throwable t) { log.error("Error while consuming updates", t); close(); } }).asRunnable(), "OryxSpeedLayerUpdateConsumerThread").start(); pairDStream.foreachRDD(new SpeedLayerUpdate<>(modelManager, updateBroker, updateTopic)); // Must use the raw Kafka stream to get offsets kafkaDStream.foreachRDD(new UpdateOffsetsFn<>(getGroupID(), getInputTopicLockMaster())); log.info("Starting Spark Streaming"); streamingContext.start(); }
Example 5
Source File: BatchLayer.java From oryx with Apache License 2.0 | 4 votes |
public synchronized void start() { String id = getID(); if (id != null) { log.info("Starting Batch Layer {}", id); } streamingContext = buildStreamingContext(); JavaSparkContext sparkContext = streamingContext.sparkContext(); Configuration hadoopConf = sparkContext.hadoopConfiguration(); Path checkpointPath = new Path(new Path(modelDirString), ".checkpoint"); log.info("Setting checkpoint dir to {}", checkpointPath); sparkContext.setCheckpointDir(checkpointPath.toString()); log.info("Creating message stream from topic"); JavaInputDStream<ConsumerRecord<K,M>> kafkaDStream = buildInputDStream(streamingContext); JavaPairDStream<K,M> pairDStream = kafkaDStream.mapToPair(mAndM -> new Tuple2<>(mAndM.key(), mAndM.value())); Class<K> keyClass = getKeyClass(); Class<M> messageClass = getMessageClass(); pairDStream.foreachRDD( new BatchUpdateFunction<>(getConfig(), keyClass, messageClass, keyWritableClass, messageWritableClass, dataDirString, modelDirString, loadUpdateInstance(), streamingContext)); // "Inline" saveAsNewAPIHadoopFiles to be able to skip saving empty RDDs pairDStream.foreachRDD(new SaveToHDFSFunction<>( dataDirString + "/oryx", "data", keyClass, messageClass, keyWritableClass, messageWritableClass, hadoopConf)); // Must use the raw Kafka stream to get offsets kafkaDStream.foreachRDD(new UpdateOffsetsFn<>(getGroupID(), getInputTopicLockMaster())); if (maxDataAgeHours != NO_MAX_AGE) { pairDStream.foreachRDD(new DeleteOldDataFn<>(hadoopConf, dataDirString, Pattern.compile("-(\\d+)\\."), maxDataAgeHours)); } if (maxModelAgeHours != NO_MAX_AGE) { pairDStream.foreachRDD(new DeleteOldDataFn<>(hadoopConf, modelDirString, Pattern.compile("(\\d+)"), maxModelAgeHours)); } log.info("Starting Spark Streaming"); streamingContext.start(); }
Example 6
Source File: WordCountingAppWithCheckpoint.java From tutorials with MIT License | 4 votes |
public static void main(String[] args) throws InterruptedException { Logger.getLogger("org") .setLevel(Level.OFF); Logger.getLogger("akka") .setLevel(Level.OFF); Map<String, Object> kafkaParams = new HashMap<>(); kafkaParams.put("bootstrap.servers", "localhost:9092"); kafkaParams.put("key.deserializer", StringDeserializer.class); kafkaParams.put("value.deserializer", StringDeserializer.class); kafkaParams.put("group.id", "use_a_separate_group_id_for_each_stream"); kafkaParams.put("auto.offset.reset", "latest"); kafkaParams.put("enable.auto.commit", false); Collection<String> topics = Arrays.asList("messages"); SparkConf sparkConf = new SparkConf(); sparkConf.setMaster("local[2]"); sparkConf.setAppName("WordCountingAppWithCheckpoint"); sparkConf.set("spark.cassandra.connection.host", "127.0.0.1"); JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, Durations.seconds(1)); sparkContext = streamingContext.sparkContext(); streamingContext.checkpoint("./.checkpoint"); JavaInputDStream<ConsumerRecord<String, String>> messages = KafkaUtils.createDirectStream(streamingContext, LocationStrategies.PreferConsistent(), ConsumerStrategies.<String, String> Subscribe(topics, kafkaParams)); JavaPairDStream<String, String> results = messages.mapToPair(record -> new Tuple2<>(record.key(), record.value())); JavaDStream<String> lines = results.map(tuple2 -> tuple2._2()); JavaDStream<String> words = lines.flatMap(x -> Arrays.asList(x.split("\\s+")) .iterator()); JavaPairDStream<String, Integer> wordCounts = words.mapToPair(s -> new Tuple2<>(s, 1)) .reduceByKey((Function2<Integer, Integer, Integer>) (i1, i2) -> i1 + i2); JavaMapWithStateDStream<String, Integer, Integer, Tuple2<String, Integer>> cumulativeWordCounts = wordCounts.mapWithState(StateSpec.function((word, one, state) -> { int sum = one.orElse(0) + (state.exists() ? state.get() : 0); Tuple2<String, Integer> output = new Tuple2<>(word, sum); state.update(sum); return output; })); cumulativeWordCounts.foreachRDD(javaRdd -> { List<Tuple2<String, Integer>> wordCountList = javaRdd.collect(); for (Tuple2<String, Integer> tuple : wordCountList) { List<Word> wordList = Arrays.asList(new Word(tuple._1, tuple._2)); JavaRDD<Word> rdd = sparkContext.parallelize(wordList); javaFunctions(rdd).writerBuilder("vocabulary", "words", mapToRow(Word.class)) .saveToCassandra(); } }); streamingContext.start(); streamingContext.awaitTermination(); }