Java Code Examples for org.apache.spark.sql.Dataset#collectAsList()
The following examples show how to use
org.apache.spark.sql.Dataset#collectAsList() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: CommonAddressFeaturesBridgeTest.java From spark-transformers with Apache License 2.0 | 6 votes |
private void assertCorrectness(Dataset<Row> rowDataset, Transformer transformer) { List<Row> sparkOutput = rowDataset.collectAsList(); for (Row row : sparkOutput) { Map<String, Object> data = new HashMap<>(); data.put("mergedAddress", row.get(0)); List<Object> list = row.getList(1); String[] sanitizedAddress = new String[list.size()]; for (int j = 0; j < sanitizedAddress.length; j++) { sanitizedAddress[j] = (String) list.get(j); } data.put("sanitizedAddress", sanitizedAddress); transformer.transform(data); assertEquals("number of words should be equals", row.get(2), data.get("numWords")); assertEquals("number of commas should be equals", row.get(3), data.get("numCommas")); assertEquals("numericPresent should be equals", row.get(4), data.get("numericPresent")); assertEquals("addressLength should be equals", row.get(5), data.get("addressLength")); assertEquals("favouredStart should be equals", row.get(6), data.get("favouredStart")); assertEquals("unfavouredStart should be equals", row.get(7), data.get("unfavouredStart")); } }
Example 2
Source File: RDDConverterUtilsExtTest.java From systemds with Apache License 2.0 | 6 votes |
@Test public void testStringDataFrameToVectorDataFrameNull() { List<String> list = new ArrayList<>(); list.add("[1.2, 3.4]"); list.add(null); JavaRDD<String> javaRddString = sc.parallelize(list); JavaRDD<Row> javaRddRow = javaRddString.map(new StringToRow()); SparkSession sparkSession = SparkSession.builder().sparkContext(sc.sc()).getOrCreate(); List<StructField> fields = new ArrayList<>(); fields.add(DataTypes.createStructField("C1", DataTypes.StringType, true)); StructType schema = DataTypes.createStructType(fields); Dataset<Row> inDF = sparkSession.createDataFrame(javaRddRow, schema); Dataset<Row> outDF = RDDConverterUtilsExt.stringDataFrameToVectorDataFrame(sparkSession, inDF); List<String> expectedResults = new ArrayList<>(); expectedResults.add("[[1.2,3.4]]"); expectedResults.add("[null]"); List<Row> outputList = outDF.collectAsList(); for (Row row : outputList) { assertTrue("Expected results don't contain: " + row, expectedResults.contains(row.toString())); } }
Example 3
Source File: MLContextTest.java From systemds with Apache License 2.0 | 6 votes |
@Test public void testOutputDataFrameFromMatrixDML() { System.out.println("MLContextTest - output DataFrame from matrix DML"); String s = "M = matrix('1 2 3 4', rows=2, cols=2);"; Script script = dml(s).out("M"); Dataset<Row> df = ml.execute(script).getMatrix("M").toDF(); Dataset<Row> sortedDF = df.sort(RDDConverterUtils.DF_ID_COLUMN); List<Row> list = sortedDF.collectAsList(); Row row1 = list.get(0); Assert.assertEquals(1.0, row1.getDouble(0), 0.0); Assert.assertEquals(1.0, row1.getDouble(1), 0.0); Assert.assertEquals(2.0, row1.getDouble(2), 0.0); Row row2 = list.get(1); Assert.assertEquals(2.0, row2.getDouble(0), 0.0); Assert.assertEquals(3.0, row2.getDouble(1), 0.0); Assert.assertEquals(4.0, row2.getDouble(2), 0.0); }
Example 4
Source File: MLContextTest.java From systemds with Apache License 2.0 | 6 votes |
@Test public void testOutputDataFrameDMLDoublesNoIDColumn() { System.out.println("MLContextTest - output DataFrame DML, doubles no ID column"); String s = "M = matrix('1 2 3 4', rows=2, cols=2);"; Script script = dml(s).out("M"); MLResults results = ml.execute(script); Dataset<Row> dataFrame = results.getDataFrameDoubleNoIDColumn("M"); List<Row> list = dataFrame.collectAsList(); Row row1 = list.get(0); Assert.assertEquals(1.0, row1.getDouble(0), 0.0); Assert.assertEquals(2.0, row1.getDouble(1), 0.0); Row row2 = list.get(1); Assert.assertEquals(3.0, row2.getDouble(0), 0.0); Assert.assertEquals(4.0, row2.getDouble(1), 0.0); }
Example 5
Source File: TestSnapshotSelection.java From iceberg with Apache License 2.0 | 6 votes |
@Test(expected = IllegalArgumentException.class) public void testSnapshotSelectionByInvalidTimestamp() throws IOException { long timestamp = System.currentTimeMillis(); String tableLocation = temp.newFolder("iceberg-table").toString(); HadoopTables tables = new HadoopTables(CONF); PartitionSpec spec = PartitionSpec.unpartitioned(); tables.create(SCHEMA, spec, tableLocation); Dataset<Row> df = spark.read() .format("iceberg") .option("as-of-timestamp", timestamp) .load(tableLocation); df.collectAsList(); }
Example 6
Source File: RDDConverterUtilsExtTest.java From systemds with Apache License 2.0 | 6 votes |
@Test public void testStringDataFrameToVectorDataFrameNull() { List<String> list = new ArrayList<>(); list.add("[1.2, 3.4]"); list.add(null); JavaRDD<String> javaRddString = sc.parallelize(list); JavaRDD<Row> javaRddRow = javaRddString.map(new StringToRow()); SparkSession sparkSession = SparkSession.builder().sparkContext(sc.sc()).getOrCreate(); List<StructField> fields = new ArrayList<>(); fields.add(DataTypes.createStructField("C1", DataTypes.StringType, true)); StructType schema = DataTypes.createStructType(fields); Dataset<Row> inDF = sparkSession.createDataFrame(javaRddRow, schema); Dataset<Row> outDF = RDDConverterUtilsExt.stringDataFrameToVectorDataFrame(sparkSession, inDF); List<String> expectedResults = new ArrayList<>(); expectedResults.add("[[1.2,3.4]]"); expectedResults.add("[null]"); List<Row> outputList = outDF.collectAsList(); for (Row row : outputList) { assertTrue("Expected results don't contain: " + row, expectedResults.contains(row.toString())); } }
Example 7
Source File: DefaultDataCollector.java From ExecDashboard with Apache License 2.0 | 5 votes |
public Map<String, List<Row>> collectAll() { Map<String, List<Row>> rowMap = new HashMap<>(); DataFrameLoader.loadDataFrame(collectionName, javaSparkContext); Dataset<Row> dataRows = null; if (collectionName.contains("pipelines")) { dataRows = getDataRowsForPipelines(); } else { dataRows = sparkSession.sql(query); } List<Row> rowList = dataRows.collectAsList(); rowList.forEach(row -> { String item = (String) ((GenericRowWithSchema) row.getAs("collectorItemId")).get(0); boolean matchingCollectorItem = !Objects.equals( Optional.ofNullable(collectorItemIds).orElseGet(Collections::emptyList).stream() .filter(Predicate.isEqual(item)).findFirst().orElse(""), ""); Date timeWindowDt = row.getAs("timeWindow"); long daysAgo = HygieiaExecutiveUtil.getDaysAgo(timeWindowDt); if (matchingCollectorItem && (daysAgo < 90)) { String collectorItemId = (String) ((GenericRowWithSchema) row.getAs("collectorItemId")).get(0); List<Row> existingRowList = rowMap.get(collectorItemId); if (existingRowList == null) { List<Row> newRow = new ArrayList<>(); newRow.add(row); rowMap.put(collectorItemId, newRow); } else { existingRowList.add(row); rowMap.put(collectorItemId, existingRowList); } } }); return rowMap; }
Example 8
Source File: MLContextTest.java From systemds with Apache License 2.0 | 5 votes |
@Test public void testOutputDataFrameVectorsWithIDColumnFromMatrixDML() { System.out.println("MLContextTest - output DataFrame of vectors with ID column from matrix DML"); String s = "M = matrix('1 2 3 4', rows=1, cols=4);"; Script script = dml(s).out("M"); Dataset<Row> df = ml.execute(script).getMatrix("M").toDFVectorWithIDColumn(); List<Row> list = df.collectAsList(); Row row = list.get(0); Assert.assertEquals(1.0, row.getDouble(0), 0.0); Assert.assertArrayEquals(new double[] { 1.0, 2.0, 3.0, 4.0 }, ((Vector) row.get(1)).toArray(), 0.0); }
Example 9
Source File: SparkSessionHeloWorld.java From Apache-Spark-2x-for-Java-Developers with MIT License | 5 votes |
public static void main(String[] args) { System.setProperty("hadoop.home.dir", "C:\\softwares\\Winutils"); SparkSession sparkSession = SparkSession.builder() .master("local") .appName("CSV Read Example") .config("spark.sql.warehouse.dir", "file:////C:/Users/sgulati/spark-warehouse") .getOrCreate(); Dataset<Row> csv = sparkSession.read().format("com.databricks.spark.csv").option("header","true") .load("C:\\Users\\sgulati\\Documents\\my_docs\\book\\testdata\\emp.csv"); csv.createOrReplaceTempView("test"); Dataset<Row> sql = sparkSession.sql("select * from test"); sql.collectAsList(); }
Example 10
Source File: JavaWord2VecExample.java From SparkDemo with MIT License | 5 votes |
public static void main(String[] args) { SparkSession spark = SparkSession .builder() .appName("JavaWord2VecExample") .getOrCreate(); // $example on$ // Input data: Each row is a bag of words from a sentence or document. List<Row> data = Arrays.asList( RowFactory.create(Arrays.asList("Hi I heard about Spark".split(" "))), RowFactory.create(Arrays.asList("I wish Java could use case classes".split(" "))), RowFactory.create(Arrays.asList("Logistic regression models are neat".split(" "))) ); StructType schema = new StructType(new StructField[]{ new StructField("text", new ArrayType(DataTypes.StringType, true), false, Metadata.empty()) }); Dataset<Row> documentDF = spark.createDataFrame(data, schema); // Learn a mapping from words to Vectors. Word2Vec word2Vec = new Word2Vec() .setInputCol("text") .setOutputCol("result") .setVectorSize(3) .setMinCount(0); Word2VecModel model = word2Vec.fit(documentDF); Dataset<Row> result = model.transform(documentDF); for (Row row : result.collectAsList()) { List<String> text = row.getList(0); Vector vector = (Vector) row.get(1); System.out.println("Text: " + text + " => \nVector: " + vector + "\n"); } // $example off$ spark.stop(); }
Example 11
Source File: MLContextTest.java From systemds with Apache License 2.0 | 5 votes |
@Test public void testOutputDataFrameVectorsWithIDColumnFromMatrixDML() { System.out.println("MLContextTest - output DataFrame of vectors with ID column from matrix DML"); String s = "M = matrix('1 2 3 4', rows=1, cols=4);"; Script script = dml(s).out("M"); Dataset<Row> df = ml.execute(script).getMatrix("M").toDFVectorWithIDColumn(); List<Row> list = df.collectAsList(); Row row = list.get(0); Assert.assertEquals(1.0, row.getDouble(0), 0.0); Assert.assertArrayEquals(new double[] { 1.0, 2.0, 3.0, 4.0 }, ((Vector) row.get(1)).toArray(), 0.0); }
Example 12
Source File: TestDataQualityDeriver.java From envelope with Apache License 2.0 | 5 votes |
@Test public void testRowLevelRules() throws Exception { Config config = ConfigUtils.configFromResource("/dq/dq-dataset-good.conf").getConfig("steps.checkrows"); SparkSession sparkSession = Contexts.getSparkSession(); List<Row> dataList = Lists.newArrayList( new RowWithSchema(SCHEMA, "Apple", "One Infinite Loop", 151), (Row)new RowWithSchema(SCHEMA, "Microsoft", "One Microsoft Way", -1) ); Dataset<Row> mydata = sparkSession.createDataFrame(dataList, SCHEMA); Map<String, Dataset<Row>> dependencies = Maps.newHashMap(); dependencies.put("mydata", mydata); DataQualityDeriver dq = new DataQualityDeriver(); assertNoValidationFailures(dq, config.getConfig("deriver")); dq.configure(config.getConfig("deriver")); Dataset<Row> dqResults = dq.derive(dependencies); List<Row> dqRows = dqResults.collectAsList(); assertEquals("Should be two rows", 2, dqRows.size()); for (Row row : dqRows) { scala.collection.immutable.Map<String, Boolean> scalaResults = row.getAs("results"); Map<String, Boolean> ruleResults = fromScalaMap(scalaResults); assertEquals("Rule results map should have three entries", 3, ruleResults.size()); assertTrue("Checkfields should pass", ruleResults.get("r1")); assertTrue("Regex should pass", ruleResults.get("r2")); assertFalse("Range should fail", ruleResults.get("r3")); } }
Example 13
Source File: TestDataFrameWrites.java From iceberg with Apache License 2.0 | 5 votes |
private void writeAndValidateWithLocations(Table table, File location, File expectedDataDir) throws IOException { Schema tableSchema = table.schema(); // use the table schema because ids are reassigned table.updateProperties().set(TableProperties.DEFAULT_FILE_FORMAT, format).commit(); List<Record> expected = RandomData.generateList(tableSchema, 100, 0L); Dataset<Row> df = createDataset(expected, tableSchema); DataFrameWriter<?> writer = df.write().format("iceberg").mode("append"); writer.save(location.toString()); table.refresh(); Dataset<Row> result = spark.read() .format("iceberg") .load(location.toString()); List<Row> actual = result.collectAsList(); Assert.assertEquals("Result size should match expected", expected.size(), actual.size()); for (int i = 0; i < expected.size(); i += 1) { assertEqualsSafe(tableSchema.asStruct(), expected.get(i), actual.get(i)); } table.currentSnapshot().addedFiles().forEach(dataFile -> Assert.assertTrue( String.format( "File should have the parent directory %s, but has: %s.", expectedDataDir.getAbsolutePath(), dataFile.path()), URI.create(dataFile.path().toString()).getPath().startsWith(expectedDataDir.getAbsolutePath()))); }
Example 14
Source File: TranslationContext.java From beam with Apache License 2.0 | 5 votes |
public static void printDatasetContent(Dataset<WindowedValue> dataset) { // cannot use dataset.show because dataset schema is binary so it will print binary // code. List<WindowedValue> windowedValues = dataset.collectAsList(); for (WindowedValue windowedValue : windowedValues) { LOG.debug("**** dataset content {} ****", windowedValue.toString()); } }
Example 15
Source File: RDDConverterUtilsExtTest.java From systemds with Apache License 2.0 | 5 votes |
@Test public void testStringDataFrameToVectorDataFrame() { List<String> list = new ArrayList<>(); list.add("((1.2, 4.3, 3.4))"); list.add("(1.2, 3.4, 2.2)"); list.add("[[1.2, 34.3, 1.2, 1.25]]"); list.add("[1.2, 3.4]"); JavaRDD<String> javaRddString = sc.parallelize(list); JavaRDD<Row> javaRddRow = javaRddString.map(new StringToRow()); SparkSession sparkSession = SparkSession.builder().sparkContext(sc.sc()).getOrCreate(); List<StructField> fields = new ArrayList<>(); fields.add(DataTypes.createStructField("C1", DataTypes.StringType, true)); StructType schema = DataTypes.createStructType(fields); Dataset<Row> inDF = sparkSession.createDataFrame(javaRddRow, schema); Dataset<Row> outDF = RDDConverterUtilsExt.stringDataFrameToVectorDataFrame(sparkSession, inDF); List<String> expectedResults = new ArrayList<>(); expectedResults.add("[[1.2,4.3,3.4]]"); expectedResults.add("[[1.2,3.4,2.2]]"); expectedResults.add("[[1.2,34.3,1.2,1.25]]"); expectedResults.add("[[1.2,3.4]]"); List<Row> outputList = outDF.collectAsList(); for (Row row : outputList) { assertTrue("Expected results don't contain: " + row, expectedResults.contains(row.toString())); } }
Example 16
Source File: Functions.java From bunsen with Apache License 2.0 | 4 votes |
/** * Returns a bundle containing all resources in the dataset. This should be used * with caution for large datasets, since the returned bundle will include all data. * * @param dataset a dataset of FHIR resoruces * @param resourceTypeUrl the FHIR resource type * @return a bundle containing those resources. */ public static Bundle toBundle(Dataset<Row> dataset, String resourceTypeUrl) { List<Row> resources = (List<Row>) dataset.collectAsList(); SparkRowConverter converter = SparkRowConverter.forResource(CONTEXT,resourceTypeUrl); Bundle bundle = new Bundle(); for (Row row : resources) { IBaseResource resource = converter.rowToResource(row); bundle.addEntry().setResource((Resource) resource); } return bundle; }
Example 17
Source File: TestFilteredScan.java From iceberg with Apache License 2.0 | 4 votes |
private static List<Row> read(String table, String expr, String select0, String... selectN) { Dataset<Row> dataset = spark.read().format("iceberg").load(table).filter(expr) .select(select0, selectN); return dataset.collectAsList(); }
Example 18
Source File: JavaEstimatorTransformerParamExample.java From SparkDemo with MIT License | 4 votes |
public static void main(String[] args) { SparkSession spark = SparkSession .builder() .appName("JavaEstimatorTransformerParamExample") .getOrCreate(); // $example on$ // Prepare training data. List<Row> dataTraining = Arrays.asList( RowFactory.create(1.0, Vectors.dense(0.0, 1.1, 0.1)), RowFactory.create(0.0, Vectors.dense(2.0, 1.0, -1.0)), RowFactory.create(0.0, Vectors.dense(2.0, 1.3, 1.0)), RowFactory.create(1.0, Vectors.dense(0.0, 1.2, -0.5)) ); StructType schema = new StructType(new StructField[]{ new StructField("label", DataTypes.DoubleType, false, Metadata.empty()), new StructField("features", new VectorUDT(), false, Metadata.empty()) }); Dataset<Row> training = spark.createDataFrame(dataTraining, schema); // Create a LogisticRegression instance. This instance is an Estimator. LogisticRegression lr = new LogisticRegression(); // Print out the parameters, documentation, and any default values. System.out.println("LogisticRegression parameters:\n" + lr.explainParams() + "\n"); // We may set parameters using setter methods. lr.setMaxIter(10).setRegParam(0.01); // Learn a LogisticRegression model. This uses the parameters stored in lr. LogisticRegressionModel model1 = lr.fit(training); // Since model1 is a Model (i.e., a Transformer produced by an Estimator), // we can view the parameters it used during fit(). // This prints the parameter (name: value) pairs, where names are unique IDs for this // LogisticRegression instance. System.out.println("Model 1 was fit using parameters: " + model1.parent().extractParamMap()); // We may alternatively specify parameters using a ParamMap. ParamMap paramMap = new ParamMap() .put(lr.maxIter().w(20)) // Specify 1 Param. .put(lr.maxIter(), 30) // This overwrites the original maxIter. .put(lr.regParam().w(0.1), lr.threshold().w(0.55)); // Specify multiple Params. // One can also combine ParamMaps. ParamMap paramMap2 = new ParamMap() .put(lr.probabilityCol().w("myProbability")); // Change output column name ParamMap paramMapCombined = paramMap.$plus$plus(paramMap2); // Now learn a new model using the paramMapCombined parameters. // paramMapCombined overrides all parameters set earlier via lr.set* methods. LogisticRegressionModel model2 = lr.fit(training, paramMapCombined); System.out.println("Model 2 was fit using parameters: " + model2.parent().extractParamMap()); // Prepare test documents. List<Row> dataTest = Arrays.asList( RowFactory.create(1.0, Vectors.dense(-1.0, 1.5, 1.3)), RowFactory.create(0.0, Vectors.dense(3.0, 2.0, -0.1)), RowFactory.create(1.0, Vectors.dense(0.0, 2.2, -1.5)) ); Dataset<Row> test = spark.createDataFrame(dataTest, schema); // Make predictions on test documents using the Transformer.transform() method. // LogisticRegression.transform will only use the 'features' column. // Note that model2.transform() outputs a 'myProbability' column instead of the usual // 'probability' column since we renamed the lr.probabilityCol parameter previously. Dataset<Row> results = model2.transform(test); Dataset<Row> rows = results.select("features", "label", "myProbability", "prediction"); for (Row r: rows.collectAsList()) { System.out.println("(" + r.get(0) + ", " + r.get(1) + ") -> prob=" + r.get(2) + ", prediction=" + r.get(3)); } // $example off$ spark.stop(); }
Example 19
Source File: TestOrcScan.java From iceberg with Apache License 2.0 | 4 votes |
@Override protected void writeAndValidate(Schema schema) throws IOException { System.out.println("Starting ORC test with " + schema); final int ROW_COUNT = 100; final long SEED = 1; File parent = temp.newFolder("orc"); File location = new File(parent, "test"); File dataFolder = new File(location, "data"); dataFolder.mkdirs(); File orcFile = new File(dataFolder, FileFormat.ORC.addExtension(UUID.randomUUID().toString())); HadoopTables tables = new HadoopTables(CONF); Table table = tables.create(schema, PartitionSpec.unpartitioned(), location.toString()); // Important: use the table's schema for the rest of the test // When tables are created, the column ids are reassigned. Schema tableSchema = table.schema(); Metrics metrics; SparkOrcWriter writer = new SparkOrcWriter(ORC.write(localOutput(orcFile)) .schema(tableSchema) .build()); try { writer.addAll(RandomData.generateSpark(tableSchema, ROW_COUNT, SEED)); } finally { writer.close(); // close writes the last batch, so metrics are not correct until after close is called metrics = writer.metrics(); } DataFile file = DataFiles.builder(PartitionSpec.unpartitioned()) .withFileSizeInBytes(orcFile.length()) .withPath(orcFile.toString()) .withMetrics(metrics) .build(); table.newAppend().appendFile(file).commit(); Dataset<Row> df = spark.read() .format("iceberg") .load(location.toString()); List<Row> rows = df.collectAsList(); Assert.assertEquals("Wrong number of rows", ROW_COUNT, rows.size()); Iterator<InternalRow> expected = RandomData.generateSpark(tableSchema, ROW_COUNT, SEED); for(int i=0; i < ROW_COUNT; ++i) { TestHelpers.assertEquals("row " + i, schema.asStruct(), expected.next(), rows.get(i)); } }
Example 20
Source File: TestFilteredScan.java From iceberg with Apache License 2.0 | 4 votes |
private static List<Row> read(String table, String expr, String select0, String... selectN) { Dataset<Row> dataset = spark.read().format("iceberg").load(table).filter(expr) .select(select0, selectN); return dataset.collectAsList(); }