Java Code Examples for org.dmg.pmml.True#INSTANCE
The following examples show how to use
org.dmg.pmml.True#INSTANCE .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: PredicateInterner.java From jpmml-evaluator with GNU Affero General Public License v3.0 | 6 votes |
public Predicate intern(Predicate predicate){ if(predicate instanceof SimplePredicate){ return intern((SimplePredicate)predicate); } else if(predicate instanceof SimpleSetPredicate){ return intern((SimpleSetPredicate)predicate); } else if(predicate instanceof True){ return True.INSTANCE; } else if(predicate instanceof False){ return False.INSTANCE; } return predicate; }
Example 2
Source File: DummyClassifier.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 4 votes |
@Override public TreeModel encodeModel(Schema schema){ List<?> classes = getClasses(); List<? extends Number> classPrior = getClassPrior(); Object constant = getConstant(); String strategy = getStrategy(); ClassDictUtil.checkSize(classes, classPrior); CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel(); int index; double[] probabilities; switch(strategy){ case "constant": { index = classes.indexOf(constant); probabilities = new double[classes.size()]; probabilities[index] = 1d; } break; case "most_frequent": { index = classPrior.indexOf(Collections.max((List)classPrior)); probabilities = new double[classes.size()]; probabilities[index] = 1d; } break; case "prior": { index = classPrior.indexOf(Collections.max((List)classPrior)); probabilities = Doubles.toArray(classPrior); } break; default: throw new IllegalArgumentException(strategy); } Node root = new ClassifierNode(ValueUtil.asString(classes.get(index)), True.INSTANCE); List<ScoreDistribution> scoreDistributions = root.getScoreDistributions(); for(int i = 0; i < classes.size(); i++){ ScoreDistribution scoreDistribution = new ScoreDistribution(ValueUtil.asString(classes.get(i)), probabilities[i]); scoreDistributions.add(scoreDistribution); } TreeModel treeModel = new TreeModel(MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(categoricalLabel), root) .setOutput(ModelUtil.createProbabilityOutput(DataType.DOUBLE, categoricalLabel)); return treeModel; }
Example 3
Source File: GolfingTreeModelExample.java From jpmml-model with BSD 3-Clause "New" or "Revised" License | 4 votes |
@Override public PMML produce(){ FieldName temperature = FieldName.create("temperature"); FieldName humidity = FieldName.create("humidity"); FieldName windy = FieldName.create("windy"); FieldName outlook = FieldName.create("outlook"); FieldName whatIdo = FieldName.create("whatIDo"); Header header = new Header() .setCopyright("www.dmg.org") .setDescription("A very small binary tree model to show structure."); DataDictionary dataDictionary = new DataDictionary() .addDataFields( new DataField(temperature, OpType.CONTINUOUS, DataType.DOUBLE), new DataField(humidity, OpType.CONTINUOUS, DataType.DOUBLE), new DataField(windy, OpType.CATEGORICAL, DataType.STRING) .addValues(createValues("true", "false")), new DataField(outlook, OpType.CATEGORICAL, DataType.STRING) .addValues(createValues("sunny", "overcast", "rain")), new DataField(whatIdo, OpType.CATEGORICAL, DataType.STRING) .addValues(createValues("will play", "may play", "no play")) ); dataDictionary.setNumberOfFields((dataDictionary.getDataFields()).size()); MiningSchema miningSchema = new MiningSchema() .addMiningFields( new MiningField(temperature), new MiningField(humidity), new MiningField(windy), new MiningField(outlook), new MiningField(whatIdo) .setUsageType(MiningField.UsageType.TARGET) ); Node root = new BranchNode("will play", True.INSTANCE); // Upper half of the tree root.addNodes( new BranchNode("will play", new SimplePredicate(outlook, Operator.EQUAL, "sunny")) .addNodes( new BranchNode("will play", createCompoundPredicate(BooleanOperator.AND, new SimplePredicate(temperature, Operator.LESS_THAN, "90"), new SimplePredicate(temperature, Operator.GREATER_THAN, "50")) ) .addNodes( new LeafNode("will play", new SimplePredicate(humidity, Operator.LESS_THAN, "80")), new LeafNode("no play", new SimplePredicate(humidity, Operator.GREATER_OR_EQUAL, "80")) ), new LeafNode("no play", createCompoundPredicate(BooleanOperator.OR, new SimplePredicate(temperature, Operator.GREATER_OR_EQUAL, "90"), new SimplePredicate(temperature, Operator.LESS_OR_EQUAL, "50")) ) ) ); // Lower half of the tree root.addNodes( new BranchNode("may play", createCompoundPredicate(BooleanOperator.OR, new SimplePredicate(outlook, Operator.EQUAL, "overcast"), new SimplePredicate(outlook, Operator.EQUAL, "rain")) ) .addNodes( new LeafNode("may play", createCompoundPredicate(BooleanOperator.AND, new SimplePredicate(temperature, Operator.GREATER_THAN, "60"), new SimplePredicate(temperature, Operator.LESS_THAN, "100"), new SimplePredicate(outlook, Operator.EQUAL, "overcast"), new SimplePredicate(humidity, Operator.LESS_THAN, "70"), new SimplePredicate(windy, Operator.EQUAL, "false")) ), new LeafNode("no play", createCompoundPredicate(BooleanOperator.AND, new SimplePredicate(outlook, Operator.EQUAL, "rain"), new SimplePredicate(humidity, Operator.LESS_THAN, "70")) ) ) ); TreeModel treeModel = new TreeModel(MiningFunction.CLASSIFICATION, miningSchema, root) .setModelName("golfing"); PMML pmml = new PMML(Version.PMML_4_4.getVersion(), header, dataDictionary) .addModels(treeModel); return pmml; }
Example 4
Source File: NodeScoreParserTest.java From jpmml-evaluator with GNU Affero General Public License v3.0 | 2 votes |
@Test public void parseAndIntern(){ Node node1a = new BranchNode("1", True.INSTANCE); Node node2a = new LeafNode("2", False.INSTANCE); Node node2b = new BranchNode("2.0", False.INSTANCE); Node node2c = new LeafNode(2.0f, True.INSTANCE); node1a.addNodes(node2a, node2b, node2c); Node node3a = new LeafNode("error", False.INSTANCE); node2b.addNodes(node3a); TreeModel treeModel = new TreeModel(MiningFunction.CLASSIFICATION, new MiningSchema(), node1a) .setMathContext(MathContext.FLOAT); VisitorBattery visitorBattery = new VisitorBattery(); visitorBattery.add(NodeScoreParser.class); visitorBattery.add(FloatInterner.class); visitorBattery.applyTo(treeModel); assertEquals("1", node1a.getScore()); assertEquals("2", node2a.getScore()); assertEquals("2.0", node2b.getScore()); assertEquals(2.0f, node2c.getScore()); assertEquals("error", node3a.getScore()); treeModel.setMiningFunction(MiningFunction.REGRESSION); visitorBattery.applyTo(treeModel); assertEquals(1.0f, node1a.getScore()); assertEquals(2.0f, node2a.getScore()); assertEquals(2.0f, node2b.getScore()); assertEquals(2.0f, node2c.getScore()); assertSame(node2a.getScore(), node2b.getScore()); assertSame(node2a.getScore(), node2c.getScore()); assertEquals("error", node3a.getScore()); }