Java Code Examples for org.jpmml.converter.Schema#getLabel()
The following examples show how to use
org.jpmml.converter.Schema#getLabel() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: MultinomialLogisticRegression.java From jpmml-lightgbm with GNU Affero General Public License v3.0 | 6 votes |
@Override public MiningModel encodeMiningModel(List<Tree> trees, Integer numIteration, Schema schema){ Schema segmentSchema = schema.toAnonymousRegressorSchema(DataType.DOUBLE); List<MiningModel> miningModels = new ArrayList<>(); CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel(); for(int i = 0, rows = categoricalLabel.size(), columns = (trees.size() / rows); i < rows; i++){ MiningModel miningModel = createMiningModel(FortranMatrixUtil.getRow(trees, rows, columns, i), numIteration, segmentSchema) .setOutput(ModelUtil.createPredictedOutput(FieldName.create("lgbmValue(" + categoricalLabel.getValue(i) + ")"), OpType.CONTINUOUS, DataType.DOUBLE)); miningModels.add(miningModel); } return MiningModelUtil.createClassification(miningModels, RegressionModel.NormalizationMethod.SOFTMAX, true, schema); }
Example 2
Source File: BoostingConverter.java From jpmml-r with GNU Affero General Public License v3.0 | 6 votes |
@Override public Model encodeModel(Schema schema){ RGenericVector boosting = getObject(); RGenericVector trees = boosting.getGenericElement("trees"); RDoubleVector weights = boosting.getDoubleElement("weights"); CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel(); List<TreeModel> treeModels = encodeTreeModels(trees); MiningModel miningModel = new MiningModel(MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(categoricalLabel)) .setSegmentation(MiningModelUtil.createSegmentation(Segmentation.MultipleModelMethod.WEIGHTED_MAJORITY_VOTE, treeModels, weights.getValues())) .setOutput(ModelUtil.createProbabilityOutput(DataType.DOUBLE, categoricalLabel)); return miningModel; }
Example 3
Source File: GBDTLRClassifier.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 6 votes |
@Override public Model encodeModel(Schema schema){ Classifier gbdt = getGBDT(); MultiOneHotEncoder ohe = getOHE(); LinearClassifier lr = getLR(); CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel(); SchemaUtil.checkSize(2, categoricalLabel); List<? extends Number> coef = lr.getCoef(); List<? extends Number> intercept = lr.getIntercept(); Schema segmentSchema = schema.toAnonymousSchema(); MiningModel miningModel = GBDTUtil.encodeModel(gbdt, ohe, coef, Iterables.getOnlyElement(intercept), segmentSchema) .setOutput(ModelUtil.createPredictedOutput(FieldName.create("decisionFunction"), OpType.CONTINUOUS, DataType.DOUBLE)); return MiningModelUtil.createBinaryLogisticClassification(miningModel, 1d, 0d, RegressionModel.NormalizationMethod.LOGIT, lr.hasProbabilityDistribution(), schema); }
Example 4
Source File: MultinomialLogisticRegression.java From jpmml-xgboost with GNU Affero General Public License v3.0 | 6 votes |
@Override public MiningModel encodeMiningModel(List<RegTree> trees, List<Float> weights, float base_score, Integer ntreeLimit, Schema schema){ Schema segmentSchema = schema.toAnonymousRegressorSchema(DataType.FLOAT); List<MiningModel> miningModels = new ArrayList<>(); CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel(); for(int i = 0, columns = categoricalLabel.size(), rows = (trees.size() / columns); i < columns; i++){ MiningModel miningModel = createMiningModel(CMatrixUtil.getColumn(trees, rows, columns, i), (weights != null) ? CMatrixUtil.getColumn(weights, rows, columns, i) : null, base_score, ntreeLimit, segmentSchema) .setOutput(ModelUtil.createPredictedOutput(FieldName.create("xgbValue(" + categoricalLabel.getValue(i) + ")"), OpType.CONTINUOUS, DataType.FLOAT)); miningModels.add(miningModel); } return MiningModelUtil.createClassification(miningModels, RegressionModel.NormalizationMethod.SOFTMAX, true, schema); }
Example 5
Source File: ModelConverter.java From jpmml-sparkml with GNU Affero General Public License v3.0 | 6 votes |
static private void checkSchema(Schema schema){ Label label = schema.getLabel(); List<? extends Feature> features = schema.getFeatures(); if(label == null){ return; } for(Feature feature : features){ if(Objects.equals(label.getName(), feature.getName())){ throw new IllegalArgumentException("Label column '" + label.getName() + "' is contained in the list of feature columns"); } } }
Example 6
Source File: SelectFirstUtil.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 5 votes |
static private MiningModel encodeModel(MiningFunction miningFunction, List<Object[]> steps, Schema schema){ if(steps.size() < 1){ throw new IllegalArgumentException(); } Label label = schema.getLabel(); List<? extends Feature> features = schema.getFeatures(); Segmentation segmentation = new Segmentation(Segmentation.MultipleModelMethod.SELECT_FIRST, null); Scope scope = new DataFrameScope(FieldName.create("X"), features); for(Object[] step : steps){ String name = TupleUtil.extractElement(step, 0, String.class); Estimator estimator = TupleUtil.extractElement(step, 1, Estimator.class); String predicate = TupleUtil.extractElement(step, 2, String.class); if(!(miningFunction).equals(estimator.getMiningFunction())){ throw new IllegalArgumentException(); } Predicate pmmlPredicate = PredicateTranslator.translate(predicate, scope); Model model = estimator.encodeModel(schema); Segment segment = new Segment(pmmlPredicate, model) .setId(name); segmentation.addSegments(segment); } MiningModel miningModel = new MiningModel(miningFunction, ModelUtil.createMiningSchema(label)) .setSegmentation(segmentation); return miningModel; }
Example 7
Source File: GeneralizedLinearRegressionModelConverter.java From jpmml-sparkml with GNU Affero General Public License v3.0 | 5 votes |
@Override public GeneralRegressionModel encodeModel(Schema schema){ GeneralizedLinearRegressionModel model = getTransformer(); Object targetCategory = null; MiningFunction miningFunction = getMiningFunction(); switch(miningFunction){ case CLASSIFICATION: CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel(); SchemaUtil.checkSize(2, categoricalLabel); targetCategory = categoricalLabel.getValue(1); break; default: break; } List<Feature> features = new ArrayList<>(schema.getFeatures()); List<Double> featureCoefficients = new ArrayList<>(VectorUtil.toList(model.coefficients())); RegressionTableUtil.simplify(this, targetCategory, features, featureCoefficients); GeneralRegressionModel generalRegressionModel = new GeneralRegressionModel(GeneralRegressionModel.ModelType.GENERALIZED_LINEAR, miningFunction, ModelUtil.createMiningSchema(schema.getLabel()), null, null, null) .setDistribution(parseFamily(model.getFamily())) .setLinkFunction(parseLinkFunction(model.getLink())) .setLinkParameter(parseLinkParameter(model.getLink())); GeneralRegressionModelUtil.encodeRegressionTable(generalRegressionModel, features, featureCoefficients, model.intercept(), targetCategory); return generalRegressionModel; }
Example 8
Source File: RuleSetClassifier.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 5 votes |
@Override public RuleSetModel encodeModel(Schema schema){ String defaultScore = getDefaultScore(); List<Object[]> rules = getRules(); Label label = schema.getLabel(); List<? extends Feature> features = schema.getFeatures(); RuleSelectionMethod ruleSelectionMethod = new RuleSelectionMethod(RuleSelectionMethod.Criterion.FIRST_HIT); RuleSet ruleSet = new RuleSet() .addRuleSelectionMethods(ruleSelectionMethod); if(defaultScore != null){ ruleSet .setDefaultConfidence(1d) .setDefaultScore(defaultScore); } Scope scope = new DataFrameScope(FieldName.create("X"), features); for(Object[] rule : rules){ String predicate = TupleUtil.extractElement(rule, 0, String.class); String score = TupleUtil.extractElement(rule, 1, String.class); Predicate pmmlPredicate = PredicateTranslator.translate(predicate, scope); SimpleRule simpleRule = new SimpleRule(score, pmmlPredicate); ruleSet.addRules(simpleRule); } RuleSetModel ruleSetModel = new RuleSetModel(MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(label), ruleSet); return ruleSetModel; }
Example 9
Source File: RandomForestConverter.java From jpmml-r with GNU Affero General Public License v3.0 | 4 votes |
private MiningModel encodeClassification(RGenericVector forest, Schema schema){ RNumberVector<?> bestvar = forest.getNumericElement("bestvar"); RNumberVector<?> treemap = forest.getNumericElement("treemap"); RIntegerVector nodepred = forest.getIntegerElement("nodepred"); RDoubleVector xbestsplit = forest.getDoubleElement("xbestsplit"); RIntegerVector nrnodes = forest.getIntegerElement("nrnodes"); RDoubleVector ntree = forest.getDoubleElement("ntree"); int rows = nrnodes.asScalar(); int columns = ValueUtil.asInt(ntree.asScalar()); CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel(); ScoreEncoder<Integer> scoreEncoder = new ScoreEncoder<Integer>(){ @Override public Object encode(Integer value){ return categoricalLabel.getValue(value - 1); } }; Schema segmentSchema = schema.toAnonymousSchema(); List<TreeModel> treeModels = new ArrayList<>(); for(int i = 0; i < columns; i++){ List<? extends Number> daughters = FortranMatrixUtil.getColumn(treemap.getValues(), 2 * rows, columns, i); TreeModel treeModel = encodeTreeModel( MiningFunction.CLASSIFICATION, scoreEncoder, FortranMatrixUtil.getColumn(daughters, rows, 2, 0), FortranMatrixUtil.getColumn(daughters, rows, 2, 1), FortranMatrixUtil.getColumn(nodepred.getValues(), rows, columns, i), FortranMatrixUtil.getColumn(bestvar.getValues(), rows, columns, i), FortranMatrixUtil.getColumn(xbestsplit.getValues(), rows, columns, i), segmentSchema ); treeModels.add(treeModel); } MiningModel miningModel = new MiningModel(MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(categoricalLabel)) .setSegmentation(MiningModelUtil.createSegmentation(Segmentation.MultipleModelMethod.MAJORITY_VOTE, treeModels)) .setOutput(ModelUtil.createProbabilityOutput(DataType.DOUBLE, categoricalLabel)); return miningModel; }
Example 10
Source File: ModelConverter.java From jpmml-sparkml with GNU Affero General Public License v3.0 | 4 votes |
public org.dmg.pmml.Model registerModel(SparkMLEncoder encoder){ Schema schema = encodeSchema(encoder); Label label = schema.getLabel(); org.dmg.pmml.Model model = encodeModel(schema); List<OutputField> sparkOutputFields = registerOutputFields(label, model, encoder); if(sparkOutputFields != null && sparkOutputFields.size() > 0){ org.dmg.pmml.Model finalModel = MiningModelUtil.getFinalModel(model); Output output = ModelUtil.ensureOutput(finalModel); List<OutputField> outputFields = output.getOutputFields(); outputFields.addAll(sparkOutputFields); } return model; }
Example 11
Source File: GBMConverter.java From jpmml-r with GNU Affero General Public License v3.0 | 4 votes |
private MiningModel encodeMultinomialClassification(List<TreeModel> treeModels, Double initF, Schema schema){ CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel(); Schema segmentSchema = schema.toAnonymousRegressorSchema(DataType.DOUBLE); List<Model> miningModels = new ArrayList<>(); for(int i = 0, columns = categoricalLabel.size(), rows = (treeModels.size() / columns); i < columns; i++){ MiningModel miningModel = createMiningModel(CMatrixUtil.getColumn(treeModels, rows, columns, i), initF, segmentSchema) .setOutput(ModelUtil.createPredictedOutput(FieldName.create("gbmValue(" + categoricalLabel.getValue(i) + ")"), OpType.CONTINUOUS, DataType.DOUBLE)); miningModels.add(miningModel); } return MiningModelUtil.createClassification(miningModels, RegressionModel.NormalizationMethod.SOFTMAX, true, schema); }
Example 12
Source File: ObjFunction.java From jpmml-xgboost with GNU Affero General Public License v3.0 | 4 votes |
static protected MiningModel createMiningModel(List<RegTree> trees, List<Float> weights, float base_score, Integer ntreeLimit, Schema schema){ if(weights != null){ if(trees.size() != weights.size()){ throw new IllegalArgumentException(); } } // End if if(ntreeLimit != null){ if(ntreeLimit > trees.size()){ throw new IllegalArgumentException("Tree limit " + ntreeLimit + " is greater than the number of trees"); } trees = trees.subList(0, ntreeLimit); if(weights != null){ weights = weights.subList(0, ntreeLimit); } } // End if if(weights != null){ weights = new ArrayList<>(weights); } ContinuousLabel continuousLabel = (ContinuousLabel)schema.getLabel(); Schema segmentSchema = schema.toAnonymousSchema(); PredicateManager predicateManager = new PredicateManager(); List<TreeModel> treeModels = new ArrayList<>(); boolean equalWeights = true; Iterator<RegTree> treeIt = trees.iterator(); Iterator<Float> weightIt = (weights != null ? weights.iterator() : null); while(treeIt.hasNext()){ RegTree tree = treeIt.next(); Float weight = (weightIt != null ? weightIt.next() : null); if(tree.isEmpty()){ weightIt.remove(); continue; } // End if if(weight != null){ equalWeights &= ValueUtil.isOne(weight); } TreeModel treeModel = tree.encodeTreeModel(predicateManager, segmentSchema); treeModels.add(treeModel); } MiningModel miningModel = new MiningModel(MiningFunction.REGRESSION, ModelUtil.createMiningSchema(continuousLabel)) .setMathContext(MathContext.FLOAT) .setSegmentation(MiningModelUtil.createSegmentation(equalWeights ? Segmentation.MultipleModelMethod.SUM : Segmentation.MultipleModelMethod.WEIGHTED_SUM, treeModels, weights)) .setTargets(ModelUtil.createRescaleTargets(null, base_score, continuousLabel)); return miningModel; }
Example 13
Source File: GLMConverter.java From jpmml-r with GNU Affero General Public License v3.0 | 4 votes |
@Override public Model encodeModel(Schema schema){ RGenericVector glm = getObject(); RDoubleVector coefficients = glm.getDoubleElement("coefficients"); RGenericVector family = glm.getGenericElement("family"); Double intercept = coefficients.getElement(getInterceptName(), false); RStringVector familyFamily = family.getStringElement("family"); RStringVector familyLink = family.getStringElement("link"); Label label = schema.getLabel(); List<? extends Feature> features = schema.getFeatures(); SchemaUtil.checkSize(coefficients.size() - (intercept != null ? 1 : 0), features); List<Double> featureCoefficients = getFeatureCoefficients(features, coefficients); MiningFunction miningFunction = getMiningFunction(familyFamily.asScalar()); Object targetCategory = null; switch(miningFunction){ case CLASSIFICATION: { CategoricalLabel categoricalLabel = (CategoricalLabel)label; SchemaUtil.checkSize(2, categoricalLabel); targetCategory = categoricalLabel.getValue(1); } break; default: break; } GeneralRegressionModel generalRegressionModel = new GeneralRegressionModel(GeneralRegressionModel.ModelType.GENERALIZED_LINEAR, miningFunction, ModelUtil.createMiningSchema(label), null, null, null) .setDistribution(parseFamily(familyFamily.asScalar())) .setLinkFunction(parseLinkFunction(familyLink.asScalar())) .setLinkParameter(parseLinkParameter(familyLink.asScalar())); GeneralRegressionModelUtil.encodeRegressionTable(generalRegressionModel, features, featureCoefficients, intercept, targetCategory); switch(miningFunction){ case CLASSIFICATION: generalRegressionModel.setOutput(ModelUtil.createProbabilityOutput(DataType.DOUBLE, (CategoricalLabel)label)); break; default: break; } return generalRegressionModel; }
Example 14
Source File: StackingUtil.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 4 votes |
static public <E extends Estimator> MiningModel encodeStacking(List<? extends E> estimators, List<String> stackMethods, PredictFunction predictFunction, E finalEstimator, boolean passthrough, Schema schema){ ClassDictUtil.checkSize(estimators, stackMethods); Label label = schema.getLabel(); List<? extends Feature> features = schema.getFeatures(); SkLearnEncoder encoder = (SkLearnEncoder)getEncoder(features); List<Feature> stackFeatures = new ArrayList<>(); List<Model> models = new ArrayList<>(); for(int i = 0; i < estimators.size(); i++){ E estimator = estimators.get(i); String stackMethod = stackMethods.get(i); Model model = estimator.encodeModel(schema); List<Feature> predictFeatures = predictFunction.apply(i, model, stackMethod, encoder); if(predictFeatures != null && predictFeatures.size() > 0){ stackFeatures.addAll(predictFeatures); } models.add(model); } if(passthrough){ stackFeatures.addAll(features); } { Schema stackSchema = new Schema(label, stackFeatures); Model finalModel = finalEstimator.encodeModel(stackSchema); models.add(finalModel); } return MiningModelUtil.createModelChain(models); }
Example 15
Source File: BaggingConverter.java From jpmml-r with GNU Affero General Public License v3.0 | 4 votes |
@Override public Model encodeModel(Schema schema){ RGenericVector bagging = getObject(); RGenericVector trees = bagging.getGenericElement("trees"); CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel(); List<TreeModel> treeModels = encodeTreeModels(trees); MiningModel miningModel = new MiningModel(MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(categoricalLabel)) .setSegmentation(MiningModelUtil.createSegmentation(Segmentation.MultipleModelMethod.MAJORITY_VOTE, treeModels)) .setOutput(ModelUtil.createProbabilityOutput(DataType.DOUBLE, categoricalLabel)); return miningModel; }
Example 16
Source File: LinearDiscriminantAnalysis.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 4 votes |
private Model encodeMultinomialModel(Schema schema){ String sklearnVersion = getSkLearnVersion(); int[] shape = getCoefShape(); int numberOfClasses = shape[0]; int numberOfFeatures = shape[1]; List<? extends Number> coef = getCoef(); List<? extends Number> intercept = getIntercept(); CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel(); List<? extends Feature> features = schema.getFeatures(); // See https://github.com/scikit-learn/scikit-learn/issues/6848 boolean corrected = (sklearnVersion != null && SkLearnUtil.compareVersion(sklearnVersion, "0.21") >= 0); if(!corrected){ return super.encodeModel(schema); } // End if if(numberOfClasses >= 3){ SchemaUtil.checkSize(numberOfClasses, categoricalLabel); Schema segmentSchema = (schema.toAnonymousRegressorSchema(DataType.DOUBLE)).toEmptySchema(); List<RegressionModel> regressionModels = new ArrayList<>(); for(int i = 0, rows = categoricalLabel.size(); i < rows; i++){ RegressionModel regressionModel = RegressionModelUtil.createRegression(features, CMatrixUtil.getRow(coef, numberOfClasses, numberOfFeatures, i), intercept.get(i), RegressionModel.NormalizationMethod.NONE, segmentSchema) .setOutput(ModelUtil.createPredictedOutput(FieldName.create("decisionFunction(" + categoricalLabel.getValue(i) + ")"), OpType.CONTINUOUS, DataType.DOUBLE)); regressionModels.add(regressionModel); } return MiningModelUtil.createClassification(regressionModels, RegressionModel.NormalizationMethod.SOFTMAX, true, schema); } else { throw new IllegalArgumentException(); } }
Example 17
Source File: ObjectiveFunction.java From jpmml-lightgbm with GNU Affero General Public License v3.0 | 3 votes |
protected MiningModel createMiningModel(List<Tree> trees, Integer numIteration, Schema schema){ ContinuousLabel continuousLabel = (ContinuousLabel)schema.getLabel(); Schema segmentSchema = schema.toAnonymousSchema(); PredicateManager predicateManager = new PredicateManager(); List<TreeModel> treeModels = new ArrayList<>(); if(numIteration != null){ if(numIteration > trees.size()){ throw new IllegalArgumentException("Tree limit " + numIteration + " is greater than the number of trees"); } trees = trees.subList(0, numIteration); } for(Tree tree : trees){ TreeModel treeModel = tree.encodeTreeModel(predicateManager, segmentSchema); treeModels.add(treeModel); } MiningModel miningModel = new MiningModel(MiningFunction.REGRESSION, ModelUtil.createMiningSchema(continuousLabel)) .setSegmentation(MiningModelUtil.createSegmentation(this.average_output_ ? Segmentation.MultipleModelMethod.AVERAGE : Segmentation.MultipleModelMethod.SUM, treeModels)); return miningModel; }
Example 18
Source File: LRMConverter.java From jpmml-r with GNU Affero General Public License v3.0 | 3 votes |
@Override public Model encodeModel(Schema schema){ RGenericVector lrm = getObject(); RDoubleVector coefficients = lrm.getDoubleElement("coefficients"); CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel(); SchemaUtil.checkSize(2, categoricalLabel); Object targetCategory = categoricalLabel.getValue(1); Double intercept = coefficients.getElement(getInterceptName(), false); List<? extends Feature> features = schema.getFeatures(); SchemaUtil.checkSize(coefficients.size() - (intercept != null ? 1 : 0), features); List<Double> featureCoefficients = getFeatureCoefficients(features, coefficients); GeneralRegressionModel generalRegressionModel = new GeneralRegressionModel(GeneralRegressionModel.ModelType.GENERALIZED_LINEAR, MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(categoricalLabel), null, null, null) .setLinkFunction(GeneralRegressionModel.LinkFunction.LOGIT) .setOutput(ModelUtil.createProbabilityOutput(DataType.DOUBLE, categoricalLabel)); GeneralRegressionModelUtil.encodeRegressionTable(generalRegressionModel, features, featureCoefficients, intercept, targetCategory); return generalRegressionModel; }
Example 19
Source File: LinearModelUtil.java From jpmml-sparkml with GNU Affero General Public License v3.0 | 3 votes |
static public <C extends ModelConverter<?> & HasRegressionTableOptions> Model createSoftmaxClassification(C converter, Matrix coefficients, Vector intercepts, Schema schema){ CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel(); MatrixUtil.checkRows(categoricalLabel.size(), coefficients); List<RegressionTable> regressionTables = new ArrayList<>(); for(int i = 0; i < categoricalLabel.size(); i++){ Object targetCategory = categoricalLabel.getValue(i); List<Feature> features = new ArrayList<>(schema.getFeatures()); List<Double> featureCoefficients = new ArrayList<>(MatrixUtil.getRow(coefficients, i)); RegressionTableUtil.simplify(converter, targetCategory, features, featureCoefficients); double intercept = intercepts.apply(i); RegressionTable regressionTable = RegressionModelUtil.createRegressionTable(features, featureCoefficients, intercept) .setTargetCategory(targetCategory); regressionTables.add(regressionTable); } RegressionModel regressionModel = new RegressionModel(MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(categoricalLabel), regressionTables) .setNormalizationMethod(RegressionModel.NormalizationMethod.SOFTMAX); return regressionModel; }
Example 20
Source File: BaseEstimator.java From jpmml-sklearn with GNU Affero General Public License v3.0 | 2 votes |
@Override public Model encodeModel(Schema schema){ MojoModel mojoModel = getMojoModel(); Converter<?> converter; try { ConverterFactory converterFactory = ConverterFactory.newConverterFactory(); converter = converterFactory.newConverter(mojoModel); } catch(Exception e){ throw new IllegalArgumentException(e); } Label label = schema.getLabel(); List<? extends Feature> features = schema.getFeatures(); H2OEncoder encoder = new H2OEncoder(); Schema h2oSchema = converter.encodeSchema(encoder); Label h2oLabel = h2oSchema.getLabel(); List<? extends Feature> h2oFeatures = h2oSchema.getFeatures(); List<Feature> sortedFeatures = new ArrayList<>(); for(Feature h2oFeature : h2oFeatures){ FieldName name = h2oFeature.getName(); Feature feature; if(features instanceof FeatureList){ FeatureList namedFeatures = (FeatureList)features; feature = namedFeatures.getFeature(name.getValue()); } else { int index = Integer.parseInt((name.getValue()).substring(1)) - 1; feature = features.get(index); } sortedFeatures.add(feature); } Schema mojoModelSchema = converter.toMojoModelSchema(new Schema(label, sortedFeatures)); return converter.encodeModel(mojoModelSchema); }